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Abstract

Equilibrium thermodynamics is a universal theory that applies to every macroscopic system in equilibrium.

Although there have been nonequilibrium analogues to various classes of systems, ranging from classical to

quantum and mesoscopic to macroscopic, unifying viewpoints are still missing. In this thesis, we explore a

general characterization of some aspects of nonequilibrium thermodynamics. We develop a general framework

that especially features the entropy production and reveal its physical consequences. The framework, which

we call the force-current structure, is composed of three relations that relate dynamics and entropy production.

Employing it, we derive two important results generically: the geometric housekeeping-excess decomposition of

entropy production and thermodynamic trade-off relations. The housekeeping-excess decomposition provides

a precise understanding of irreversibility evaluated by entropy production by splitting it into two contributions

from two distinct aspects in nonequilibrium processes. The geometric nature of the force-current structure

enables us to formulate the decomposition by the projection of thermodynamic forces, which exhibits higher

generality than conventional methods. We also derive thermodynamic trade-off relations, which are inequalities

tightening the second law of thermodynamics and reveal that the entropy production is a fundamental cost in

nonequilibrium processes. We especially discuss trade-offs between the entropy production and accuracy or

speed. The framework and its consequences are applicable to various kinds of systems with local equilibrium;

in this thesis, we deal with overdamped Langevin systems, Markov jump processes, chemical reaction networks,

hydrodynamic systems, and Markovian open quantum systems.
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Chapter 1

Introduction

Thermodynamics tells us what we can do and cannot do in a universal way. Classical equilibrium thermodynam-

ics describes systems in equilibrium states and quantifies the irreversibility of transisions between equilibrium

states with entropy. Researchers have explored a universal theory like the equilibrium thermodynamics for a

century, and have partially succeeded in establishing it in systems out of equilibrium; one example is chemical

thermodynamics. In general, a chemical reaction system can be out of chemical equilibrium, that is, forward

and backward reactions are not necessarily balanced. In this sense, the system is nonequilibrium. Nonetheless,

chemical thermodynamics has proven that we can discuss irreversibility with thermodynamic concepts such as

free energy [1–3]. This owes to the surrounding environment (solvent), which can be regarded as always staying

in an equilibrium state. As a result, we can define thermodynamic quantities and find relationship between the

phenomenological dynamics of chemical reactions and thermodynamics.

The situation is similar in a state-of-the-art theory of mesoscopic systems, called stochastic thermodynam-

ics [4–9]. For example, when we put colloidal particles at a single point in water, the ensemble of the system (in

the sense of statistical mechanics) is out of equilibrium. After a long time, the particles diffuse and the system

reaches an equilibrium ensemble. In stochastic thermodynamics, we can discuss mesoscopic nonequilibrium

processes like this diffusive example in terms of thermodynamics, owing to the environment (water), which is

in equilibrium.

In addition to the above two examples, there are several classes of physical systems to which the thermody-

namic framework can be established because of the environment relaxing to the equilibrium much faster than

the system we focus on. We use the term nonequilibrium thermodynamics to refer to the thermodynamic frame-

work applied to such phenomenological dynamics. It is one of the merits of nonequilibrium thermodynamics

that we can discuss irreversibility in various nonequilibrium phenomena from a universal viewpoint, based on

thermodynamic relations such as the second law.

The scope of nonequilibrium thermodynamics can be historically and physically classified into two groups.

The first one consists of macroscopic systems, such as chemical reaction systems and hydrodynamic systems,

studied in irreversible thermodynamics since the middle of the last century [10–12]. On the other hand, stochas-

tic thermodynamics, which has achieved a significant development in this century, covers the second class, in-

cluding mesoscopic stochastic processes [4–9] and open quantum systems [13–16]. Nevertheless, they share

the defining property, namely, the phenomenological dynamical description of nonequilibrium processes un-

derpinned by environmental equilibrium. Therefore, there should be a unified method to understand and study

these systems.

The purpose of this thesis is to provide a framework that enables us to discuss nonequilibrium thermo-

dynamic systems in a unified manner. We have studied nonequilibrium thermodynamics of macroscopic sys-

tems [17–20] and mesoscopic classical and quantum systems [19, 21] in the author’s PhD course. After studying

the variety of systems, we discovered that there is a unifying framework of nonequilibrium thermodynamics

and it is useful to understand thermodynamic restrictions in nonequilibrium systems. In this thesis, we present

the framework and its implications and show how it includes the specific nonequilibrium systems. Because

the framework is characterized by two concepts, thermodynamic force and irreversible current, we call it the

force-current structure.

The force-current structure can be outlined as follows (Fig. 1.1 summarizes the discussion in the following

five paragraphs): Irreversible current (current, in short hereafter) determines the phenomenological time evolu-

3



4 CHAPTER 1. INTRODUCTION

tion via the continuity equation with an appropriate “divergence” operator. The entropy production rate in the

dynamics is provided by the product between the current and thermodynamic force; in other words, thermo-

dynamic force represents the entropy production per each elementary process. The thermodynamic force and

the current are connected by a positive-definite and symmetric operator, which assures the nonnegativity of the

entropy production rate and, in addition, enables a geometric interpretation.

The structure yields several physical consequences. First, we can show that the dynamical system possesses

an equilibrium (detailed balanced) state if and only if the thermodynamic force is conservative (the conserva-

tiveness is characterized by “gradient” operator adjoint to the “divergence”). Moreover, the geometric inter-

pretation enables to derive and understand generically two crucial results found in stochastic thermodynamics:

housekeeping-excess decomposition and thermodynamic trade-off relations (inequalities).

The housekeeping-excess decomposition offers a precise understanding of the dissipation [5, 6, 22–27]. In

a nonequilibrium system, entropy production is incurred by two sources of nonequilibrium effects: breaking

of detailed balance and nonstationarity. The housekeeping and the excess contributions of entropy production

respectively address these two aspects. Recently, a geometric aspect of the decomposition was pointed out

in Ref. [28, 29]. After that, we revealed that the connection is so universal that we can generally define the

decomposition by focusing on the geometry of forces even in systems where conventional methods are not ap-

plicable [19–21, 30]. In this thesis, we discuss the decomposition generally by using the force-current structure.

We also consider the relationship between the force-current structure and thermodynamic trade-off relations.

Thermodynamic trade-off relations refer to inequalities involving the entropy production (rate) and other costs,

such as the variance of an observable (which measures how uncertain the observable is) or the time required to

change a state from one to another, i.e., the speed of a change. The inequalities involving uncertainty are called

thermodynamic uncertainty relations [18, 30–40] and those dealing with speed called thermodynamic speed

limits [18, 30, 39, 41–47]. Thermodynamic speed limits often measure states’ distance by using a sophisticated

measure called Wasserstein distances [19, 30, 39, 45, 46], developed in optimal transport theory, a branch of

mathematics [48]. In this thesis, we derive one kind of thermodynamic uncertainty relation and thermodynamic

speed limits utilizing a discrete analogue of the Wasserstein distance, based on our papers [18–21].

To accomplish the goals of providing a framework and deriving physical results, this dissertation is organized

as follows: The next chapter, Chapter 2, considers stochastic dynamics of continuous degrees of freedom, such

as the Brownian particle, called the Langevin dynamics, which serve as a prototype for understanding the general

force-current structure. We explain the dynamics and how thermodynamics is introduced to them. The concept

of being conservative, which plays a crucial role in this thesis, is introduced via the standard definition of

conservative mechanical forces.

Chapter 3 develops the general theory of the force-current structure. We establish the framework and prove

several facts related to the conservativeness.

Chapter 4 deals with the housekeeping-excess decomposition of entropy production. We review the back-

ground of the method and general statements derived from the force-current structure. In particular, the con-

servativeness distinguishes “essentially” equilibrium systems and nonequilibrium ones and defines the house-

keeping entropy production by how far the system is from the “equilibriumness.”

Chapter 5 is dedicated to thermodynamic trade-off relations. The understanding of this topic has signifi-

cantly been deepened in the last decade; we do not review all of the results, but focus on those derived from

the force-current structure. Our emphasis is put on short-time thermodynamic uncertainty relations and ther-

modynamic speed limits using the Wasserstein distance. We provide a review of these results by the Langevin

dynamics, and then give general proof via the force-curernt structure.

The latter part of this thesis (chapters 6 to 9) considers specific systems, each of which is based on our

papers [19–21] (Ref. [19] includes the results of chapters 6 and 7). All the chapters have a common outline: we

first describe the phenomenological dynamics and explain how they can be (re)written in the form of continuity

equation. Then, we install thermodynamics by making an assumption that represents equilibrium environment,

which is often called the local equilibrium assumption [12], and obtain the entropy production rate and the

thermodynamic force. We prove the system possesses the force-current structure and derive and examine the

results implied by the structure concretely.

The continuous-time dynamics between discrete mesostates, called the Markov jump processes, are the sub-

ject of Chapter 6. While they are one of the most well-studied classes of systems in stochastic thermodynamics,

few studies focus on the continuity-equation representation of the phenomenological equation of motion, the



5

Continuity equation Entropy production rateOnsager relation

Housekeeping-excess 
decomposition (Chapter 4)

Thermodynamic trade-off relations
(Chapter 5)

Force-current structure (Chapter 3)

Geometric expression       characterizes

conservativeness

Figure 1.1: Schematics of the general results developed in Part I. Arrows indicate that the statements at the tail

jointly lead to that at the head.

master equation. Still, the master equation is written as a continuity equation, where the divergence operator is

given by a matrix that is associated with the graph of the mesostates. Cycles of state transitions are represented

by null vectors of this matrix.

Chapter 7 discusses chemical reaction networks, assemblies of chemical reactions. They have such a similar

framework to Markov jump processes that we can regard them as a generalization of Markov jump processes.

In addition to demonstrating the general force-current structure in chemical reaction networks, we also con-

sider how we can establish nonequilibrium thermodynamics in non-ideal chemical systems by examining ideal

chemical systems.

We consider hydrodynamic systems described by the Navier–Stokes equation in Chapter 8. In this and next

section, we encounter “reversible terms” in phenomenological dynamics, which makes the connection between

dynamics and thermodynamics complicated; however, it is still possible to find the force-current structure. Al-

though there are little studies on the housekeeping-excess decomposition in hydrodynamic systems, the general

framework successfully offers it. Moreover, our decomposition is revealed to have a connection to Helmholtz’

nineteenth century work on minimum dissipation.

The subject of Chapter 9 is open quantum systems. We consider Markovian dynamics expressed by an

ordinary differential equation for the density operator, called the quantum master equation. At the beginning,

we need to find appropriate definition of thermodynamic forces and currents. According to our latest study [21],

we can obtain the force-current structure that is purely quantum, not depending on any specific basis.

We finish the main part with the conclusion in Chapter 10. In this chapter, we provide a table of the key

objects of the force-current structure in specific systems.

Appendix A is dedicated to optimal transport theory [48], which provides the aforementioned sophisticated

distance measure, the Wasserstein distance. In optimal transport theory, the distance between two states is

measured by the transportation cost. The transporation cost has a close connection to the entropy production,

leading to a trade-off relation between speed and dissipation. We explain the optimal transport theory between

continuous probability distributions, and an extension to discrete systems.





Chapter 2

Warm-up through Langevin system

Before we proceed to the general framework, we outline it through a system that is well studied in nonequilib-

rium thermodynamics, the Langevin systems. After reviewing its dynamics and thermodynamics, we consider

their connections. We expect this section serves as a guide for understanding the abstract discussion in Chapter 3.

2.1 Langevin system

2.1.1 Langevin equation

The Langevin dynamics is a Markovian model that describes stochastic motion under thermal noise, e.g., the

trajectory of a colloidal particle in water [49, 50]. The scale separation between the system (e.g., a colloidal

particle) and the environmental media (water molecules) rationalizes the Markovian modeling of the dynam-

ics [4].

Let 𝑿 ∈ ℝ𝑁 denote the coordinates of the system (when the number of particles is one and the spatial

dimension is three, 𝑁 = 3). We consider the case where the particles are exerted mechanical forces 𝒇 in a

medium having mobility 𝜇 and diffusion coefficient 𝐷. Then, the Langevin equation is given as [4]

𝑑𝑿
𝑑𝑡 = 𝜇𝒇(𝑿) + √2𝐷𝝃, (2.1)

where 𝝃 is the white Gaussian noise, which satisfies

⟨𝜉𝑖(𝑡)⟩ = 0, ⟨𝜉𝑖(𝑡)𝜉𝑗(𝑡′)⟩ = 𝛿𝑖𝑗𝛿(𝑡 − 𝑡′). (2.2)

Here, ⟨⋅⟩ indicates the ensemble average 1 and 𝛿𝑖𝑗 and 𝛿(⋅) are the Kronecker delta and the delta function. When

the medium’s inverse temperature is 𝛽, the constants satisify the fluctuation-dissipation relation [51]

𝜇 = 𝛽𝐷. (2.3)

Equation (2.1) is sometimes referred to as the overdamped Langevin equation because it is derived by ignor-

ing the inertia in the more detailed description of the stochastic dynamics called the underdamped Langevin

equation.

2.1.2 Fokker–Planck equation

At the trajectory level, i.e., if we track a time evolution of individual 𝑿, there is randomness due to the noise
𝝃. However, at the ensemble level, that is, if we consider the probability distribution 𝑃(𝑿), it evolves determin-
istically; especially, the Langevin equation (2.1) is known to be equivalent to the Fokker–Planck equation for

probability distributions [52]

𝜕
𝜕𝑡𝑃(𝑿) = −𝛁 ⋅ (𝜇𝒇(𝑿)𝑃(𝑿)) + 𝛁 ⋅ (𝐷𝛁𝑃(𝑿)). (2.4)

1When the coordinate variable 𝑿 exists in the bracket, we also take the average regarding 𝑿 over a suitable probability distribution.

7
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Here, 𝛁 is the differential operator with respect to 𝑿. If we define the probability current 𝑱𝑃 by

𝑱𝑃(𝑿) ≔ 𝜇𝒇(𝑿)𝑃(𝑿) − 𝐷𝛁𝑃(𝑿), (2.5)

equation (2.4) turns into the continuity equation

𝜕
𝜕𝑡𝑃(𝑿) = −𝛁 ⋅ 𝑱𝑃(𝑿). (2.6)

When we consider Langevin systems, we assume both the probability distribution and the probability current

vanish when |𝑿| → ∞.

We call 𝑃ss a steady-state distribution or a steady state in short if it satisfies

𝛁 ⋅ 𝑱𝑃ss(𝑿) = 0. (2.7)

Then, the distribution no longer changes and the system becomes stationary. Moreover, the current is called

detailed balanced if it vanishes; this is stronger than the steady-state condition. We define the system to be

detailed balanced if there is a probability distribution 𝜋 where the current is detailed balanced. A steady state

can depend on time if the mechanical force is time-dependent. We call the steady state corresponding to the

mechanical force at the moment the instantaneous steady state.

2.1.3 Ito product and Stratonovich product

In addition to the physical aspects, we here explain some important mathematical properties of the Langevin

equation [50]. Formally, the white Gaussian noise 𝝃 should be interpreted as the Wiener process. For a time

interval 𝑑𝑡, 𝑑𝑾 ≔ 𝝃𝑑𝑡 becomes a Gaussian random variable that satisfies

⟨𝑑𝑊𝑖⟩ = 0, ⟨𝑑𝑊𝑖𝑑𝑊𝑗⟩ = 𝛿𝑖𝑗𝑑𝑡. (2.8)

Although this holds for any time interval 𝑑𝑡 > 0, we assume hereafter 𝑑𝑡 is sufficiently small and neglect terms
of the order smaller than 𝑑𝑡. If 𝑑𝑡 is so small, we can regard 𝑑𝑊𝑖𝑑𝑊𝑗 as 𝛿𝑖𝑗𝑑𝑡 without taking average [50].

The product between a function of 𝑿 and increments that include 𝑑𝑾, such as 𝑑𝑿 = 𝑿(𝑡+𝑑𝑡)−𝑿(𝑡), must
be treated carefully. For a given vector-valued function 𝒈, the following two products yield different results:

𝒈(𝑿) ⋅ 𝑑𝑿 ≔ ∑
𝑖
𝑔𝑖(𝑿)𝑑𝑋𝑖, (2.9)

𝒈(𝑿) ∘ 𝑑𝑿 ≔ ∑
𝑖
𝑔𝑖(𝑿 + 𝑑𝑿/2)𝑑𝑋𝑖. (2.10)

The former one is called the Ito product, while the latter the Stratonovich product [50]. They are different

because

𝑔𝑖(𝑿 + 𝑑𝑿/2)𝑑𝑋𝑖 = 𝑔𝑖(𝑿)𝑑𝑋𝑖 +
1
2 ∑𝑗

𝜕𝑔𝑖
𝜕𝑋𝑗

(𝑿)𝑑𝑋𝑖𝑑𝑋𝑗 (2.11)

and 𝑑𝑋𝑖𝑑𝑋𝑗 will be of the non-negligible order 𝑑𝑡.
The advantage of the Ito product is that we can calculate the average easily since we have

⟨𝒈(𝑿) ⋅ 𝑑𝑿⟩ = 𝜇⟨𝒈(𝑿) ⋅ 𝒇(𝑿)⟩𝑑𝑡 + √2𝐷⟨𝒈(𝑿) ⋅ 𝑑𝑾⟩

= 𝜇⟨𝒈(𝑿) ⋅ 𝒇(𝑿)⟩𝑑𝑡 + √2𝐷⟨𝒈(𝑿)⟩⟨𝑑𝑾⟩
= 𝜇⟨𝒈(𝑿) ⋅ 𝒇(𝑿)⟩𝑑𝑡,

where the second line follows from the fact that 𝑑𝑾 is independent of 𝑿. On the other hand, the Stratonovich
product aligns with the chain rule

𝑑ℎ(𝑿) ≔ ℎ(𝑿 + 𝑑𝑿) − ℎ(𝑿) = 𝛁ℎ(𝑿) ∘ 𝑑𝑿 (2.12)
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because

ℎ(𝑿 + 𝑑𝑿/2 ± 𝑑𝑿/2) = ℎ(𝑿 + 𝑑𝑿/2) ± 𝛁ℎ(𝑿 + 𝑑𝑿/2) ⋅ 𝑑𝑿2 .

Moreover, the expectation value of 𝒈(𝑿) ∘ 𝑑𝑿 can be computed by

⟨𝒈(𝑿) ∘ 𝑑𝑿⟩ = 𝑑𝑡∫𝒈(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋. (2.13)

It is proved as follows:

⟨𝒈(𝑿) ∘ 𝑑𝑿⟩ = ⟨𝒈(𝑿) ⋅ 𝑑𝑿⟩ + 1
2 ∑𝑖,𝑗

⟨
𝜕𝑔𝑖
𝜕𝑋𝑗

(𝑿)𝑑𝑋𝑖𝑑𝑋𝑗⟩

= 𝜇⟨𝒈(𝑿) ⋅ 𝒇(𝑿)⟩𝑑𝑡 + 1
2 ∑𝑖,𝑗

⟨
𝜕𝑔𝑖
𝜕𝑋𝑗

(𝑿)(2𝐷𝑑𝑊𝑖𝑑𝑊𝑗)⟩

= 𝜇⟨𝒈(𝑿) ⋅ 𝒇(𝑿)⟩𝑑𝑡 + 𝐷⟨𝛁 ⋅ 𝒈(𝑿)⟩𝑑𝑡

= 𝑑𝑡∫(𝒈(𝑿) ⋅ (𝜇𝒇(𝑿)) + 𝐷𝛁 ⋅ 𝒈(𝑿))𝑃(𝑿)𝑑𝑋

= 𝑑𝑡∫𝒈(𝑿) ⋅ (𝜇𝒇(𝑿)𝑃(𝑿) − 𝐷𝛁𝑃(𝑿))𝑑𝑋,

where we used the Langevin equation in the second line, the Gaussian property of 𝑑𝑾 in the third line, and

performed integration by parts in the last line.

2.2 Thermodynamics

Owing to the scale separation, we may assume that the environment is always in equilibrium [4]. This is often

referred to as the local equilibrium assumption [12]. The fluctuation-dissipation relation (2.3) is nothing but

a consequence of the assumption. Then, we can consider thermodynamics of the Langevin dynamics, i.e., the

first and second laws. The thermodynamic theory of stochatic systems is called stochastic thermodynamics [4,

7]. In addition to the Langevin dynamics, which involves continuous degrees of freedom, there is a discrete

segment in stochastic thermodynamics, which will be explained in Chapter 6.

2.2.1 First law

We first consider the first law in the Langevin system. We need to consider exchange of energy between the

particles and the bath (hereafter, we refer to the medium (environment) by the bath or the heat bath, emphasizing

its role as a heat reservoir). Sekimoto proposed to define the heat emitted to the bath during a short time interval

𝑑𝑡 by [4, 53]

𝑑 ̂𝑞 = 𝒇(𝑿) ∘ 𝑑𝑿. (2.14)

From Eq. (2.13), its expectation value is obtained as

⟨𝑑 ̂𝑞⟩ = 𝑑𝑡∫𝒇(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋. (2.15)

Assume we have a potential function 𝑈(𝑿; 𝒂) with external parameters 𝒂. Then, the mechanical force

is decomposable into the conservative force −𝛁𝑈 and an external force 𝒇ext as 𝒇 = −𝛁𝑈 + 𝒇ext. We can

influence the system via the parameter 𝒂 and the external force𝒇ext. By defining the work by 𝑑�̂� ≔ 𝜕𝒂𝑈(𝑿; 𝒂)⋅
𝑑𝒂 + 𝒇ext(𝑿) ∘ 𝑑𝑿, the first law of thermodynamics is established as

𝑑𝑈(𝑿; 𝒂) = 𝑑�̂� − 𝑑 ̂𝑞 (2.16)

at the trajectory level.
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2.2.2 Second law

The second law of thermodynamics can also be discussed. Assume the entropy of the system is provided by the

Shannon entropy times the Boltzmann constant 𝑘B [7]

𝑠(𝑿) = −𝑘B ln𝑃(𝑿). (2.17)

Its average is given by

𝑆 = ⟨𝑠(𝑿)⟩ = −𝑘B∫𝑃(𝑿) ln𝑃(𝑿)𝑑𝑋. (2.18)

Thus, the rate of entropy change is provided by

𝑑𝑆
𝑑𝑡 = −𝑘B∫

𝜕𝑃
𝜕𝑡 (𝑿) ln𝑃(𝑿)𝑑𝑋

= 𝑘B∫𝛁 ⋅ 𝑱𝑃(𝑿) ln𝑃(𝑿)𝑑𝑋

= −𝑘B∫(𝛁 ln𝑃(𝑿)) ⋅ 𝑱𝑃(𝑿)𝑑𝑋, (2.19)

where we used the fact that the derivative of ln𝑃(𝑿) will lead to the vanishing term (𝑑/𝑑𝑡) ∫ 𝑃(𝑿)𝑑𝑋 = 0 and
conducted integration by parts in the last line. Note that the equality of the form (𝑑/𝑑𝑡) ∫ 𝑃 ln𝑃 = ∫(𝑑𝑃/𝑑𝑡) ln𝑃
will be used again and again in this thesis, without explicit explanation.

On the other hand, we also need to consider the entropy change in the environment. We assume that the

environment is always in the thermal equilibrium at inverse temperature 𝛽 = 1/(𝑘B𝑇). Then, the entropy change
will be

𝑑𝑆env
𝑑𝑡 = 𝑘B𝛽

⟨𝑑 ̂𝑞⟩
𝑑𝑡 = 𝑘B𝛽∫𝒇(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋. (2.20)

Combining the entropy changes of the system and the environment, we finally obtain the total entropy change

Σ̇𝑃 ≔
𝑑𝑆
𝑑𝑡 +

𝑑𝑆env
𝑑𝑡 = ∫𝑱𝑃(𝑿) ⋅ [𝑘B𝛽𝒇(𝑿) − 𝑘B𝛁 ln𝑃(𝑿)]𝑑𝑋, (2.21)

which we call the entropy production rate (EPR).

The second law of thermodynamics claims Σ̇𝑃 is always non-negative; in fact, we can prove this statement,
owing to the local equilibrium assumption. Looking at Eq. (2.21), we think of defining thermodynamic force

𝑭𝑃 by

𝑭𝑃(𝑿) ≔ 𝑘B𝛽𝒇(𝑿) − 𝑘B𝛁 ln𝑃(𝑿). (2.22)

Then, we realize that the thermodynamic force is connected to the probability current 𝑱𝑃 by

𝑱𝑃(𝑿) =
𝐷𝑃(𝑿)
𝑘B

𝑭𝑃(𝑿) = 𝜇𝑇𝑃(𝑿)𝑭𝑃(𝑿), (2.23)

by comparing Eqs. (2.5) and (2.22) and using the fluctuation-dissipation relation (2.3). This relation can be

regarded as a kind of the linear relation given in linear response theory [10, 11]. The EPR now reads

Σ̇𝑃 = ∫𝑱𝑃(𝑿) ⋅ 𝑭𝑃(𝑿)𝑑𝑋 = 𝜇𝑇∫ |𝑭𝑃(𝑿)|2𝑃(𝑿)𝑑𝑋 (2.24)

and it is non-negative as 𝜇𝑇 and 𝑃(𝑿) are always non-negative. It is worth noting that Eq. (2.24) is the squared
norm of the thermodynamic force with 𝜇𝑇𝑃(𝑿) being the metric.

We define 𝑃 to be equilibrium if the EPR vanishes there. From Eq. (2.24), an equilibrium state must satisfy

𝑭𝑃(𝑿) = 0. Furthermore, Eq. (2.23) shows that being equilibrium is equivalent to the detailed balance 𝑱𝑃(𝑿) =
0.
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Although the thermodynamic force has “force” in its name, it has the dimension of entropy density and

provides the entropy production on the movement from 𝑿 to 𝑿 +𝑑𝑿. This is evident once realizing the relation

𝑑𝑠 + 𝑘B𝛽𝑑 ̂𝑞 = 𝑭𝑃(𝑿) ∘ 𝑑𝑿, (2.25)

where 𝑑𝑠 = 𝑠(𝑿 + 𝑑𝑿) − 𝑠(𝑿).

2.3 Conservativeness and detailed balance

2.3.1 Conservative force

When there are no external forces, the mechanical force is provided by a potential function as 𝒇 = −𝛁𝑈 and

the thermodynamic force becomes

𝑭𝑃(𝑿) = −𝛁𝜙𝑃(𝑿), with 𝜙𝑃(𝑿) = 𝑘B[ln𝑃(𝑿) + 𝛽𝑈(𝑿)]. (2.26)

We define a thermodynamic force 𝑭 to be conservative if it is given as the gradient of a potential. We say a

system is conservative if 𝑭𝑃 is conservative for every 𝑃.
This terminology is consistent with mechanics. Note that the thermodynamic force can be separated as

𝑭𝑃(𝑿) = 𝑭0(𝑿) − 𝛁(𝑘B ln𝑃(𝑿)) (2.27)

with 𝑭0(𝑿) ≔ 𝑘B𝛽𝒇(𝑿). Therefore, the system is conservative if and only if the mechanical force is conserva-

tive in the sense of mechanics.

With the canonical distribution

𝑃can(𝑿) ≔ 𝑒−𝛽𝑈(𝑿)

𝑍𝛽
, 𝑍𝛽 = ∫𝑒−𝛽𝑈(𝑿)𝑑𝑋, (2.28)

the potential 𝜙𝑃 is rewritten as

𝜙𝑃(𝑿) = 𝑘B ln
𝑃(𝑿)

𝑃can(𝑿)
− 𝑘B ln𝑍𝛽. (2.29)

Since ln𝑍𝛽 does not depend on 𝑿, the potential

̃𝜙𝑃(𝑿) = 𝑘B ln
𝑃(𝑿)

𝑃can(𝑿)
(2.30)

also provides the same thermodynamic force,

𝑭𝑃(𝑿) = −𝛁 ̃𝜙𝑃(𝑿). (2.31)

From this formula, it is evident that the thermodynamic force vanishes when 𝑃 = 𝑃can. Since the probability
current is connected to the thermodynamic force via Eq. (2.23), it also vanishes then. That is, the detailed

balance holds at 𝑃 = 𝑃can.
When the system is conservative, the EPR is reformed into

Σ̇𝑃 = −𝑘B
𝜕
𝜕𝑡𝐷(𝑃(𝑡)‖𝑃

can(𝑠))||𝑠=𝑡
, (2.32)

where 𝑃can(𝑠) is the instantaneous canonical distribution defined by the potential 𝑈 at time 𝑠, and 𝐷 is the

Kullback–Leibler divergence

𝐷(𝑃‖𝑄) ≔ ∫𝑃(𝑿) ln 𝑃(𝑿)
𝑄(𝑿)

𝑑𝑋. (2.33)
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This is because

𝑘B
𝜕
𝜕𝑡𝐷(𝑃(𝑡)‖𝑃

can(𝑠))||𝑠=𝑡
= ∫ 𝜕𝑃

𝜕𝑡 (𝑿)
̃𝜙𝑃(𝑿)𝑑𝑋

= −∫(𝛁 ⋅ 𝑱𝑃(𝑿)) ̃𝜙𝑃(𝑿)𝑑𝑋

= ∫𝑱𝑃(𝑿) ⋅ 𝛁 ̃𝜙𝑃(𝑿)𝑑𝑋

= −∫𝑱𝑃(𝑿) ⋅ 𝑭𝑃(𝑿)𝑑𝑋 = −Σ̇𝑃,

where we used the fact that the derivative of ln𝑃 results in 0 in the first line, and did integration by parts in the
third line.

If the system is autonomous (i.e., 𝑈 does not change in time), Eq. (2.32) becomes

Σ̇𝑃 = −𝑘B
𝑑
𝑑𝑡𝐷(𝑃‖𝑃

can). (2.34)

As the EPR is always non-negative, we see the convergence to the canonical state. The ERP vanishes at the

canonical distribution, which means that 𝑃can is the equilibrium state.

2.3.2 Equivalence

We can reorganize the above discussion more formally; we can prove that the following two statements are

equivalent:

(1) There exists a potential 𝜓 such that

𝑭0(𝑿) = −𝛁𝜓(𝑿). (2.35)

(2) There exists a probability distribution 𝜋 where the detailed balance holds

𝑱𝜋(𝑿) = 0. (2.36)

Let us first prove that (1) leads to (2). We can choose 𝜋 as

𝜋(𝑿) = 1
𝑍𝑒

−𝜓(𝑿)/𝑘B with 𝑍 = ∫𝑒−𝜓(𝑿)/𝑘B𝑑𝑋, (2.37)

which is a probability distribution because it is positive and satisfies the normalization ∫𝜋(𝑿)𝑑𝑋 = 1. The
force vanishes at 𝑃 = 𝜋 because

𝑭𝜋(𝑿) = 𝑭0(𝑿) − 𝑘B𝛁 ln𝜋(𝑿)
= 𝑭0(𝑿) + 𝛁𝜓(𝑿) = 0.

Again, the linear relation (2.23) concludes that 𝑱𝜋(𝑿) = 0.
The converse is also shown with the linear relation (2.23). From it, we find 𝑭𝜋(𝑿) = 0, that is,

𝑭0(𝑿) − 𝛁(𝑘B ln𝜋(𝑿)) = 0,

which shows 𝜓(𝑿) = −𝑘B ln𝜋(𝑿) provides 𝑭0(𝑿) in the form of Eq. (2.35).

The equivalence indicates that the system possesses an equilibrium state if and only if it is conservative;

while the equilibrium was defined in terms of the steady-state property, detailed balance, now we have another

characterization with a thermodynamic notion, namely, the thermodynamic force. We can judge whether the

system is an “equilibrium system”, by just looking at the thermodynamic force, without knowing whether the

detailed balance holds in steady states.

The thermodynamic force becomes nonconseravtive if the mechanical force has a nonconservative contri-

bution (in the sense of mechanics), such as an external stir. Alternatively, while now we assume 𝛽, 𝜇 and 𝐷
are constant, their anisotropy can make the thermodynamic force nonconservative [54]. They can prevent the

system from relaxing to the equilibrium and incurr dissipation even in the steady state.
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2.4 Cycle and breaking of detalied balance

While the detailed balance is characterized by the gradient, we can also quantitatively discuss its breaking by

using the adjoint, the divergence. In a steady state, the current satisfies

𝛁 ⋅ 𝑱𝑃ss(𝑿) = 0. (2.38)

If the detailed balance holds, we have 𝑱𝑃ss(𝑿) = 0; however, it does not in general. Still, if we assume thatthe
dimension 𝑁 is 3, we can obtain

𝑱𝑃ss(𝑿) = 𝛁 × 𝑨(𝑿) (2.39)

with a vector field 𝑨, where × indicates the cross product. That is, the steady-state condition (2.38) generally

implies that the current becomes a rotation.

This is physically natural; if the system is conservative, the system relaxes to a detailed-balanced steady

state, and there are no net current and dissipation. On the other hand, if there is an external driving that forces

the steady state to be nonequilibrium, there should be some cyclic motion that does not change the system in total

but causes certain dissipation. Such a cyclic contribution is represented by the rotation form in Eq. (2.39), or

more generally, the kernel of the divergence. This point of view was introduced by Qian in Ref. [55] to discuss

the nonequilibrium thermodynamics of molecular motors and generalized to higher-dimensional systems in

Ref. [56].

Correspondingly to Eq. (2.39), we may define a cyclic force by

𝑩(𝑿) ≔ 𝛁 × 𝑭𝑃ss(𝑿). (2.40)

As a result, we get the formula

Σ̇𝑃ss = ∫𝑨(𝑿) ⋅ 𝑩(𝑿)𝑑𝑋 (2.41)

because

∫𝑱𝑃ss(𝑿) ⋅ 𝑭𝑃ss(𝑿)𝑑𝑋 = ∫[𝛁 × 𝑨(𝑿)] ⋅ 𝑭𝑃(𝑿)𝑑𝑋

= ∑
𝑖,𝑗,𝑘

∫𝜖𝑖𝑗𝑘𝜕𝑗𝐴𝑘(𝑿)[𝑭𝑃(𝑿)]𝑖𝑑𝑋

= − ∑
𝑖,𝑗,𝑘

∫𝜖𝑖𝑗𝑘𝐴𝑘(𝑿)𝜕𝑗[𝑭𝑃(𝑿)]𝑖𝑑𝑋

= − ∑
𝑖,𝑗,𝑘

∫(−𝜖𝑘𝑗𝑖)𝐴𝑘(𝑿)𝜕𝑗[𝑭𝑃(𝑿)]𝑖𝑑𝑋

= ∫𝑨(𝑿) ⋅ [𝛁 × 𝑭(𝑿)]𝑑𝑋,

where 𝜖𝑖𝑗𝑘 is the Levi–Civita symbol, and we conducted integration by parts in the third line.
Even though the interpretation of Eq. (2.41) is not apparent for the Langevin dynamics, its discrete coun-

terpart, discussed in later sections, is a renowned formula found by Schnakenberg [57] and easily interpreted as

the decomposition of the total dissipation into the contributions from each “cycles.”





Chapter 3

General framework of force-current

structure

This section aims to establish a general framework that includes the author’s research spreading over several

kinds of systems. We have studied nonequilibrium thermodynamics of classicalstochastic systems, chemical

systems, hydrodynamic systems and quantum systems. In particular, we have explored an underlying common

geometric structure of thermodynamic forces and insights it provides to nonequilibrium thermodynamics. Al-

though systems that we can consider are diverse, the important concepts have already appeared in the previous

section: continuity equation, current, thermodynamic force, and their close connection.

3.1 Dynamics and current

3.1.1 Mathematical structure

We always consider the dynamics of an open system coupled to a single or multiple environment(s). The system

can exchange energy or particles with the environments. Let us prepare a mathematical ground to treat such a

dynamics.

We assume the state of the system is described by a variable 𝑥 that resides in a subset 𝒮 of a linear space 𝒮0.
We call 𝒮0 the state space. If the system’s dynamics are stochastic, we will choose a variable that represents
the ensemble, while if it is deterministic, we will take macroscopic quantities, e.g., concentrations in chemical

systems.

In the Langevin dynamics, 𝑥 is the probability distribution and 𝒮0 is a suitable functional space. There is
arbitrariness in choosing 𝒮. Naively, 𝒮would be the set of normalized positive distributions, but we can impose
only the positivity condition of the distributions. We can regard the normalization property as a consequence of

the equation of motion, rather than what is intrinsic to the system (discussed later).

In addition to the state space 𝒮0, we introduce another linear space for variables such as forces and currents,
ℱ, which we call the force space. We regard each dimension of ℱ corresponds to an elementary process in

the dynamics. Remember that [𝑭𝑃(𝑿)]𝑖 provides the entropy production by the movement 𝑑𝑋𝑖 in the Langevin
dynamics. That is, the vector-valued function 𝑭𝑃 stores every possible value of entropy production when the
system’s state is given by 𝑃. Similarly, we will introduce a thermodynamic force as a map from 𝑥 ∈ 𝒮 to an

element in ℱ that stores the information of entropy production.

These spaces are equipped with inner products; we simply write them as ⟨⋅, ⋅⟩ for both spaces. The spaces
can be real or complex linear spaces, but we conduct general discussion as if they are real for simplicity. It is

not difficult to verify the discussion in the complex case. The spaces should be called the Hilbert spaces rather

than just linear spaces; yet, we do not need to stick to mathematical rigorousness in this point and roughly use

the terminology.

3.1.2 Dynamics

We assume that we can model the dynamics by the following equation of motion
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𝜕𝑥
𝜕𝑡 = 𝑓rev(𝑥) + ∇∗𝐽(𝑥). (3.1)

First, 𝑓rev(𝑥) is a reversible term, which comes from the system’s internal dynamics and not influenced by the

environment. While it does not exist in the overdamped Langevin dynamics, the underdamped version has a

reversible term [49]. Another example is the unitary term in the open quantum systems (see Chapter 9). Gener-

ally, the reversible term does not cause any dissipation and has little to do with thermodynamics. However, it is

crucial for time evolution, so we need to care about it when considering connections between thermodynamics

and dynamics.

Next, 𝐽 is a current. It is a map from 𝒮 to ℱ and provides the occurrence rates of the elementary pro-

cesses. For example, the elements of the probability current [𝑱𝑃(𝑿)]𝑖𝑑𝑡 can be regarded as the averaging weight
corresponding to 𝑑𝑋𝑖 as in Eq. (2.13).

Finally, we have the gradient operator∇, which is a linear map from 𝒮0 toℱ. Its adjoint∇∗, the divergence

operator is defined by

⟨∇∗𝐽, 𝜙⟩ = ⟨𝐽, ∇𝜙⟩ (3.2)

for any 𝐽 ∈ ℱ and 𝜙 ∈ 𝒮0. When ∇ is the differential operator 𝛁, its adjoint will be −𝛁⋅, where the dot
indicates that it takes a vector-valued function and returns a dot product.

The divergence operator and the current constitute the continuity-equation part of the dynamics. If there is

no reversible term, which is often the case with systems without inertia, the equation of motion becomes purely

a continuity equation as

𝜕𝑥
𝜕𝑡 = ∇∗𝐽(𝑥). (3.3)

We say 𝑥ss is a steady state if it satisfies 𝑓rev(𝑥ss) + ∇∗𝐽(𝑥ss) = 0. When 𝐽(𝑥ss) = 0 holds, the current is
said to be detailed balanced. Althogh being detailed balanced does not mean being a steady state in the most

general sense, if the system does not have a reversible term, the detailed balance guarantees a steady state. As

is often the case with systems with discrete degrees of freedom, the current 𝐽 can be expressed by the difference
between a forward and a backward contribution as 𝐽 = 𝐽+ − 𝐽−. Then, the detailed balance can be understood
as the balance between 𝐽+ and 𝐽−. When the detailed balance is violated in the steady state, it can be called a

nonequilibrium steady state, or in short, NESS.

3.1.3 Conservation laws

The gradient operator usually has a nontrivial kernel (null space). For the differential operator 𝛁, a constant
function that returns a constant for any 𝑿 vanishes when multiplied by 𝛁.

We call a vector 𝜆 ∈ 𝒮0 a conservation law if it satisfies

⟨𝜆, 𝑓rev(𝑥)⟩ = 0 ∀𝑥 ∈ 𝒮, (3.4)

∇𝜆 = 0. (3.5)

This is because then ⟨𝜆, 𝑥⟩ is conserved:

𝑑
𝑑𝑡⟨𝜆

(𝑖), 𝑥⟩ = ⟨𝜆(𝑖), 𝜕𝑥𝜕𝑡 ⟩ = ⟨𝜆(𝑖), 𝑓rev⟩ + ⟨∇𝜆(𝑖), 𝐽(𝑥)⟩ = 0.

When there is no reversible term, every null vector of ∇ becomes a conservation law. In the Langevin case,

constant function 𝜆𝑐 ∶ 𝑿 ↦ 𝑐 ∈ ℝ is a conservation law as mentioned. It provides a conservative quantity

⟨𝜆𝑐, 𝑃⟩ = ∫𝑐𝑃(𝑿)𝑑𝑋 = 𝑐∫𝑃(𝑿)𝑑𝑋. (3.6)

Therefore, we can regard the normalization ∫𝑃(𝑿)𝑑𝑋 = 1 as a conservation law emerging from the equation

of motion, instead of an assumption on the system.

We assume that there are a finite number of linearly independent conservation laws and write them as

{𝜆(𝑖)}𝑖=1,…,𝑛.
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3.2 Thermodynamics and thermodynamic force

3.2.1 Local equilibrium assumption

Next, we consider thermodynamics. To this end, we postulate the local equilibrium assumption [12, 58]. That

is, we assume that the degrees of freedom other than those we focus on relax to the thermal equilibrium very fast.

As a consequence, we expect that there is a consistency between the (remained) phenomenological dynamics

of the system and thermodynamics and thermodynamic functions are well defined with the system’s variable

and a few thermodynamic parameters, such as the environment’s temperature. This assumption is equivalent to

assuming the scale separation between the system and the environment.

3.2.2 Thermodynamic force and entropy production

We assume that we have a thermodynamic force 𝐹 ∶ 𝒮 → ℱ that quantifies the entropy production in each

elementary process. It is equivalent to saying that entropy production rate (EPR) Σ̇(𝑥) is given by

Σ̇(𝑥) = ⟨𝐽(𝑥), 𝐹(𝑥)⟩. (3.7)

Similarly to the continuity-equation form (3.1) being an assumption, Eq. (3.7) is also an assumption. In concrete

systems, we will obtain Eq. (3.7) by evaluating the entropy change in the system 𝑑𝑆/𝑑𝑡 and the environmental
entropy change ̇𝑆env as we did in Chapter 2. In defining the entropy and calculating ̇𝑆env, local equilibrium will

be required.

The second law of thermodynamics claims that the entropy never decreases. Thus, the EPR given in Eq. (3.7)

must be non-negative; but it is not derived from what we have discussed. We need some relation between the

thermodynamic force and current.

We assume that there is a symmetric and positive linear mapℳ𝑥 ∶ ℱ → ℱ, which may depend on 𝑥, that
satisfies

ℳ𝑥(𝐹(𝑥)) = 𝐽(𝑥). (3.8)

Here, the symmetric and positive property means that ⟨𝐹′,ℳ𝑥(𝐹″)⟩ = ⟨ℳ𝑥(𝐹′), 𝐹″⟩ for any 𝐹′, 𝐹″ ∈ ℱ and

⟨𝐹′,ℳ𝑥(𝐹′)⟩ > 0 for any 𝐹′ ∈ ℱ such that 𝐹′ ≠ 0. The positivity implies that ℳ𝑥(𝐹′) = 0 only if 𝐹′ = 0
because otherwise ⟨𝐹′,ℳ𝑥(𝐹′)⟩ = 0 even though 𝐹′ ≠ 0. The symmetry and positivity naturally lead to an
inner product

⟨𝐹′, 𝐹″⟩𝑥 ≔ ⟨𝐹′,ℳ𝑥(𝐹″)⟩ (3.9)

and the induced norm ‖𝐹′‖𝑥 ≔ √⟨𝐹′, 𝐹′⟩𝑥. The existence ofℳ𝑥 ensures the non-negativity of the EPR; we can

rewrite Eq. (3.7) as

Σ̇(𝑥) = ‖𝐹(𝑥)‖2𝑥, (3.10)

which is obviously non-negative. This expression will be the starting point of the discussion in Chapter 4. For

convenience, we call Eq. (3.8) the Onsager relation, as it generalizes a similar relationship in linear response

theory found in Onsager’s papers [10, 11].

We call 𝑥eq an equilibrium state when Σ̇(𝑥eq) = 0 holds. It is obvious that 𝑥eq is an equilibrium state if the

current is detailed balanced 𝐽(𝑥eq) = 0. The converse is ensured by the Onsager relation: Σ̇(𝑥eq) = 0 implies
𝐹(𝑥eq) = 0 because of Eq. (3.10), which further means 𝐽(𝑥) = 0 due to the Onsager relation (3.8).

In the Langevin dynamics, the current and the thermodynamic force are acutally connected as in Eq. (2.23),

whereℳ𝑥 is the multiplication of 𝜇𝑇𝑃(𝑿), which is provided by 𝑥 = 𝑃(𝑿) and the environment’s parameters,
𝜇 and 𝑇. In general,ℳ𝑥 is expressed by 𝑥 and some parameters associated with the local equilibrium property

of the environment.

Equation (3.8) usually follows from the local equilibrium assumption. In particular, it leads to a connection

between kinetics and thermodynamics, often referred to as a local detailed balance. It takes various forms; the

fluctuation-dissipation relation (2.3) can be seen as a kind of local detailed balance.
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Wecall the above structure involving dynamics and thermodynamics the force-curernt structure. We provide

the summary below.

Force-current structure

1. Equation of motion is written with current and gradient

𝜕𝑥
𝜕𝑡 = 𝑓rev(𝑥) + ∇∗𝐽(𝑥) or

𝜕𝑥
𝜕𝑡 = ∇∗𝐽(𝑥) (3.1) / (3.3)

2. Thermodynamic force gives entropy production rate as

Σ̇(𝑥) = ⟨𝐽(𝑥), 𝐹(𝑥)⟩ (3.7)

3. Positive and symmetric linear map connects force and current

ℳ𝑥(𝐹(𝑥)) = 𝐽(𝑥) (3.8)

3.2.3 Alternative of the force-current relation

We make an advanced remark about the Onsager relation (3.8). Now, the thermodynamic force is mapped to

the current by a linear map, which enables us to write the EPR as a squared norm. However, we can choose

a nonlinear map, which then provides the EPR by the divergence between forces. Such a method has proven

useful in systems with discrete degrees of freedom [59, 60], but we do not discuss these results in this thesis.

3.3 Conservativeness and detailed balance

As in the Langevin dynamics, we can discuss the connection between conservativeness of thermodynamic forces

and detailed balance. However, deducing a general result like the equivalence between conservativeness and

detailed balance on the most general ground is challenging. Still, additional (technical) assumptions enable us

to reproduce the proof in general. This point was loosely treated in our previous studies [20, 21], so here we try

to rigorously identify the conditions to generally obtain the equivalence.

3.3.1 Assumptions

Here, we make two assumptions:

Assumption C1. Thermodynamic forces are always written in the form

𝐹(𝑥) = 𝐹0 − ∇𝜑(𝑥) (3.11)

where 𝐹0 ∈ ℱ is independent of 𝑥 and 𝜑 ∶ 𝒮→ 𝒮0 is bijective.

Assumption C2. For any 𝜓 ∈ 𝒮0 and 𝑥 ∈ 𝒮, there is a solution 𝜇 ∈ ℝ𝑛 to the equations

𝑔𝑖(𝜇; 𝜓) ≔ ⟨𝜆(𝑖), 𝜑−1(𝜓 −
𝑛
∑
𝑖=1

𝜇𝑖𝜆(𝑖))⟩ = ⟨𝜆(𝑖), 𝑥⟩. (3.12)

The first assumption, C1, is realized with 𝐹0 = 𝑘B𝛽𝒇(𝑿) and 𝜑(𝑥) = 𝑘B ln𝑃(𝑿) in the Langevin dynamics
(note that here the probability distribution 𝑃(𝑿) plays the role of 𝑥). The bijectivity is guaranteed because now
𝒮 is all the positive distributions rather than normalized positive distributions.

The second condition means we can find a state of the form 𝜑−1(𝜓 −∑𝑛
𝑖=1 𝜇𝑖𝜆

(𝑖)) that satisfies the conser-
vation laws. To the best of our knowledge, this condition cannot be reasonably loosened and we need to check
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if it holds in each case. In the Langevin dynamics, this equation reads

𝑔(𝜇; 𝜓) = ∫𝑒[𝜓(𝑿)−𝜇]/𝑘B𝑑𝑋 = 1 (3.13)

for 𝜇, and it is solved by

𝜇 = 𝑘B ln∫𝑒𝜓(𝑿)/𝑘B𝑑𝑋. (3.14)

With this 𝜇, 𝑒[𝜓(𝑿)−𝜇]/𝑘B becomes a normalized probability distribution. More nontrivial examples are provided

in later sections (specifically, in Sec. 6.3.4, Sec.7.2.4, and Sec. 9.2.4, and in an example in Sec. 9.5.2).

3.3.2 Equivalence

We define a thermodynamic force to be conservative if it is provided by

𝐹 = −∇𝜙 (3.15)

with a potential 𝜙 ∈ 𝒮. A system is said to be conservative if for any 𝑥 ∈ 𝒮, there is a potential 𝜙(𝑥) such that
𝐹(𝑥) = −∇𝜙(𝑥). Given assumptions C1 and C2, we can prove that the following statements are equivalent:

(1) There is a potential 𝜓 ∈ 𝒮0 such that 𝐹0 = −∇𝜓.

(2) For any 𝑥 ∈ 𝒮, there exists 𝜋 ∈ 𝒮 such that 𝐽(𝜋) = 0 and ⟨𝜆(𝑖), 𝜋⟩ = ⟨𝜆(𝑖), 𝑥⟩ for all 𝑖.

Let us show (1)⇒ (2). We choose 𝜋 as

𝜋 = 𝜑−1(𝜓 +∑
𝑖
𝜇𝑖𝜆(𝑖)), (3.16)

where 𝜇 is the solution to

𝑔𝑖(𝜇; 𝜓) = ⟨𝜆(𝑖), 𝑥⟩, (3.17)

which exists due to the second assumption. Then, we have

𝐹(𝜋) = 𝐹0 − ∇𝜑(𝜋) = 𝐹0 − ∇𝜓 = 0,

where we used ∇𝜆(𝑖) = 0 in the second equality. Therefore, we find 𝐽(𝜋) = 0 because of the Onsager relation.
The converse is immediately proved as follows: 𝐽(𝜋) = 0 implies 𝐹(𝜋) = 0 because of the positivity ofℳ𝜋

as already discussed. Then, we find

𝐹0 = ∇𝜑(𝜋)

since 𝐹(𝜋) = 𝐹0 − ∇𝜑(𝜋).

If assumption C2 is not satisfied, we can only prove that (1) is equivalent to

(2’) There exists 𝜋 ∈ 𝒮 such that 𝐽(𝜋) = 0.

That is, for a given initial state, it will no longer be guaranteed that there is an equilibrium state that has the

same values of the conserved quantities.

The implication of the equivalence does not change from the Langevin case: whether the system is an

equilibrium system can be judged not only from the dynamical point of view, but also by the thermodynamic

criterion, i.e., whether the thermodynamic force is conservative or not. In concrete systems discussed in the

following, the equivalence is obtaiend once we prove that the two assumptions are satisfied.
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3.4 Cycle and breaking of detailed balance

Finally, we generically define cycles by the kernel of ∇∗. A current 𝐽 ∈ ℱ is defined to be a cycle if it satisfies

∇∗𝐽 = 0. For example, a steady-state current becomes a cycle when there is no reversible term. Cycles

correspond to currents that break the detailed balance and represent motions that do not cause any change in

total but incurs certain dissipation.

Since the kernel of∇∗ is a linear space, it can be expressed as the image of another operator𝒯 that maps some

space intoℱ and identically satisfies∇∗𝒯 = 0. Let a steady-state current 𝐽(𝑥ss) be written as𝒯(𝑗𝑐). Physically,
𝑗𝑐 is interpreted as providing the occurence rate of each cyclic motion. Then, if we define the thermodynamic
force on cycles as

𝑓𝑐 ≔ 𝒯∗(𝐹(𝑥ss)) (3.18)

with the adjoint 𝒯∗, the EPR reads

Σ̇(𝑥ss) = ⟨𝑗𝑐, 𝑓𝑐⟩. (3.19)

As explained later, this is the generalization of the formula given by Schnakenberg [57].



Chapter 4

Housekeeping-excess decomposition

The geometric housekeeping-excess decomposition is one of the most crucial consequences of the general

framework presented in the preceding section. In this chapter, we provide a brief introduction to the housekeeping-

excess decomposition and reveal its intimate connection to the force-current structure and conservativeness.

4.1 Review

In this section, we review the history of the housekeeping-excess decomposition of EPR. We describe the mo-

tivation of the decomposition and two famous formulations: the Hatano–Sasa and the Maes–Netočný decom-

position.

4.1.1 Breaking and recovery of the second law

For equilibrium states 𝐴 and 𝐵, we can obtain the entropy difference by measuring heat quasistatically

Δ𝑆 ≔ 𝑆(𝐵) − 𝑆(𝐴) = lim
𝜏→∞

∫
𝜏

0

̇𝑞
𝑇𝑑𝑡, (4.1)

where ̇𝑞 is the heat flux into the system per time and 𝑇 is the bath temperature [61]. For a finite-time protocol,

we have instead the Clausius inequality

Δ𝑆 ≥ ∫
𝜏

0

̇𝑞
𝑇𝑑𝑡, (4.2)

which is a form of the second law of thermodynamics.

On the other hand, if the system is externally driven to be out of equilibrium and there is a heat flux even if

the system is in a steady state, the quasistatic limit causes divergence

∫
𝜏

0

̇𝑞
𝑇𝑑𝑡 → ∞ (4.3)

and we cannot measure the entropy difference.

In Ref. [22], Oono and Paniconi proposed to subtract the housekeeping heat ̇𝑞hk from ̇𝑞 to obtain the excess
heat ̇𝑞ex and recover the formula (4.1) as

Δ𝑆 = lim
𝜏→∞

∫
𝜏

0

̇𝑞ex

𝑇 𝑑𝑡. (4.4)

In general, we can expect the generalized Clausius inequality

Δ𝑆 ≥ ∫
𝜏

0

̇𝑞ex

𝑇 𝑑𝑡 (4.5)

and the steady-state version of the Clausius inequality for the housekeeping heat

−
𝑞hk

𝑇 ≥ 0. (4.6)

21
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4.1.2 Hatano–Sasa decomposition in Langevin dynamics

The first concrete atempt to define the housekeeping and excess heats was provided by Hatano and Sasa in the

overdamped Langevin dynamics [23]. At the trajectory level, they define the housekeeping heat flux as

̇𝑞hk,HS𝑑𝑡 = −𝑇𝑭𝑃ss(𝑿) ∘ 𝑑𝑿, (4.7)

where HS stands for Hatano–Sasa and 𝑃ss is the instantenous steady state. Remembering the definition of the
thermodynamic force (2.22), we can rewrite it into

̇𝑞hk,HS𝑑𝑡 = −𝒇(𝑿) ∘ 𝑑𝑿 + 𝛽−1𝛁 ln𝑃ss(𝑿) ∘ 𝑑𝑿. (4.8)

Given the definition of heat (2.14) (note that there the sign of heat is opposite), we obtain the excess heat

̇𝑞ex,HS𝑑𝑡 = −𝛽−1𝛁 ln𝑃ss(𝑿) ∘ 𝑑𝑿. (4.9)

For the Langevin dynamics, we can prove the inequalities in Eqs. (4.5) and (4.6) at the ensemble level. Let

us check Eq. (4.6) first. This proof is given in Ref. [29]. By taking the average, the housekeeping heat becomes

⟨ ̇𝑞hk,HS⟩ = −𝑇∫𝑭𝑃ss(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋. (4.10)

Equation (4.6) is proved if we can rewrite this equality into

⟨ ̇𝑞hk,HS⟩ = −𝜇𝑇2∫𝑃(𝑿)|𝑭𝑃ss(𝑿)|2𝑑𝑋. (4.11)

This is proved as follows: first, we have

∫𝑃(𝑿)𝑭𝑃ss(𝑿) ⋅ (𝑭𝑃(𝑿) − 𝑭𝑃ss(𝑿))𝑑𝑋 = 0 (4.12)

because

𝑭𝑃(𝑿) − 𝑭𝑃ss(𝑿) = −𝑘B𝛁 ln
𝑃(𝑿)
𝑃ss(𝑿)

= −𝑘B
𝑃ss(𝑿)
𝑃(𝑿)

𝛁( 𝑃(𝑿)
𝑃ss(𝑿))

and

∫𝑃(𝑿)𝑭𝑃ss(𝑿) ⋅ (𝑭𝑃(𝑿) − 𝑭𝑃ss(𝑿))𝑑𝑋 = −𝑘B∫𝑃ss(𝑿)𝑭𝑃ss(𝑿) ⋅ 𝛁(
𝑃(𝑿)
𝑃ss(𝑿))

𝑑𝑋

= −𝑘B𝜇𝑇 ∫𝑱𝑃ss(𝑿) ⋅ 𝛁(
𝑃(𝑿)
𝑃ss(𝑿))

𝑑𝑋

= 𝑘B
𝜇𝑇 ∫[𝛁 ⋅ 𝑱𝑃ss(𝑿)]

𝑃(𝑿)
𝑃ss(𝑿)

𝑑𝑋 = 0,

where we used integration by parts in the last line. Then, Eq. (4.11) follows from the calculation

𝑇∫𝑭𝑃ss(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋 = 𝜇𝑇2∫𝑃(𝑿)𝑭𝑃ss(𝑿) ⋅ 𝑭𝑃(𝑿)𝑑𝑋

= 𝜇𝑇2∫𝑃(𝑿)𝑭𝑃ss(𝑿) ⋅ (𝑭𝑃ss(𝑿) + 𝑭𝑃(𝑿) − 𝑭𝑃ss(𝑿))𝑑𝑋

= 𝜇𝑇2∫𝑃(𝑿)|𝑭𝑃ss(𝑿)|2𝑑𝑋.

Next, we consider the generalized Clausius inequality (4.5). The averaged excess heat is given by

⟨ ̇𝑞ex,HS⟩ = −𝛽−1∫[𝛁 ln𝑃ss(𝑿)] ⋅ 𝑱𝑃(𝑿)𝑑𝑋

= 𝛽−1∫ ln𝑃ss(𝑿)𝛁 ⋅ 𝑱𝑃(𝑿)𝑑𝑋,
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where the second line is obtained by integration by parts. Since the time derivative of the Shannon entropy is

provided as (see Eq. (2.19))

𝑑𝑆
𝑑𝑡 = −𝑘B∫(𝛁 ln𝑃(𝑿)) ⋅ 𝑱𝑃(𝑿)𝑑𝑋,

we have

𝑑𝑆
𝑑𝑡 −

⟨ ̇𝑞ex,HS⟩
𝑇 = −𝑘B∫[𝛁 ln

𝑃(𝑿)
𝑃ss(𝑿)]

⋅ 𝑱𝑃(𝑿)𝑑𝑋

= ∫[𝑭𝑃(𝑿) − 𝑭𝑃ss(𝑿)] ⋅ 𝑱𝑃(𝑿)𝑑𝑋.

From Eqs. (2.23) and (4.12), we further obtain

𝑑𝑆
𝑑𝑡 −

⟨ ̇𝑞ex,HS⟩
𝑇 = 𝜇𝑇∫𝑃(𝑿)|𝑭𝑃(𝑿) − 𝑭𝑃ss(𝑿)|2𝑑𝑋, (4.13)

which shows that Eq. (4.5) holds at every moment.

In summary, we have two non-negative quantities

−
⟨ ̇𝑞hk,HS⟩

𝑇 = ∫𝑭𝑃ss(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋, (4.14)

𝑑𝑆
𝑑𝑡 −

⟨ ̇𝑞ex,HS⟩
𝑇 = ∫[𝑭𝑃(𝑿) − 𝑭𝑃ss(𝑿)] ⋅ 𝑱𝑃(𝑿)𝑑𝑋, (4.15)

and they sum up to the total EPR as

Σ̇𝑃 = −
⟨ ̇𝑞hk,HS⟩

𝑇 + [𝑑𝑆𝑑𝑡 −
⟨ ̇𝑞ex,HS⟩

𝑇 ]. (4.16)

Therefore, it is reasonable to define the housekeeping and excess EPRs as

Σ̇hk,HS𝑃 ≔∫𝑭𝑃ss(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋 (4.17)

Σ̇ex,HS𝑃 ≔∫[𝑭𝑃(𝑿) − 𝑭𝑃ss(𝑿)] ⋅ 𝑱𝑃(𝑿)𝑑𝑋. (4.18)

We call the decomposition Σ̇𝑃 = Σ̇hk,HS𝑃 + Σ̇ex,HS𝑃 the Hatano–Sasa (HS) decomposition. Since the HS excess

EPR vanishes when the system changes adiabatically following the steady state closely, it is sometimes called

the non-adiabatic EPR [5, 6]. They are defined solely with the current, thermodynamic force, and the steady

state, so we can generalize them to the general force-current structure.

It is worth noting that the definition (4.18) can recover the formula (2.32) without detailed balance; the HS

excess EPR is provided as

Σ̇ex,HS𝑃 = −𝑘B
𝜕
𝜕𝑡𝐷(𝑃(𝑡)‖𝑃

ss(𝑠))||𝑠=𝑡
. (4.19)

It is easily proved as

−𝑘B
𝜕
𝜕𝑡𝐷(𝑃(𝑡)‖𝑃

ss(𝑠))||𝑠=𝑡
= −𝑘B∫

𝜕𝑃
𝜕𝑡 (𝑿) ln

𝑃(𝑿)
𝑃ss(𝑿)

𝑑𝑋 = 𝑘B∫𝛁 ⋅ 𝑱𝑃(𝑿) ln
𝑃(𝑿)
𝑃ss(𝑿)

𝑑𝑋

= −𝑘B∫𝑱𝑃(𝑿) ⋅ 𝛁 ln
𝑃(𝑿)
𝑃ss(𝑿)

𝑑𝑋 = 𝑘B∫𝑱𝑃(𝑿) ⋅ [𝑭𝑃(𝑿) − 𝑭𝑃ss(𝑿)]𝑑𝑋.

Equation (4.19) implies not only the convergence to the (instantaneous) steady state but also the limitation of

the Hatano–Sasa decomposition as discussed in Sec. 4.2.
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4.1.3 Maes–Netočný decomposition as an alternative

Another proposal of decomposition was given by Maes and Netočný (MN) thirteen years after the Hatano–Sasa

decomposition [25] in relation to the so-called minimum entropy production principle [62]. They define the

MN housekeeping EPR as

Σ̇hk,MN
𝑃 ≔ inf

𝜓
𝜇𝑇∫ |𝑭𝑃(𝑿) − (−𝛁𝜓(𝑿))|2𝑃(𝑿)𝑑𝑋. (4.20)

It is easy to see that Σ̇hk,MN
𝑃 is non-negative and not bigger than Σ̇𝑃; thus, the MN excess EPR Σ̇ex,MN

𝑃 is defined

by

Σ̇ex,MN
𝑃 ≔ Σ̇𝑃 − Σ̇hk,MN

𝑃 (4.21)

and becomes non-negative. They also show that the excess EPR follows

Σ̇ex,MN
𝑃 = inf

𝜓
𝜇𝑇∫ |𝛁𝜓(𝑿)|2𝑃(𝑿)𝑑𝑋 s.t. 𝜇𝑇𝛁 ⋅ (𝑃(𝑿)𝛁𝜓(𝑿)) = 𝛁 ⋅ 𝑱𝑃(𝑿). (4.22)

Therefore, the MN excess EPR can be interpreted as the minimum EPR to induce the time evolution by conser-

vative force.

We can relate them to the Clausius inequality as follows. Let 𝜓∗ be the optimizer of Eq. (4.22). We first

confirm the relaion

Σ̇ex,MN
𝑃 = −∫𝜓∗(𝑿)𝛁 ⋅ 𝑱𝑃(𝑿)𝑑𝑋. (4.23)

This is because

𝜇𝑇∫ |𝛁𝜓∗(𝑿)|2𝑃(𝑿)𝑑𝑋 = −𝜇𝑇∫𝜓∗(𝑿)𝛁 ⋅ [𝑃(𝑿)𝛁𝜓∗(𝑿)]𝑑𝑋

= −∫𝜓∗(𝑿)𝛁 ⋅ 𝑱𝑃(𝑿)𝑑𝑋,

where the second line comes from the condition in Eq. (4.22). Then, we define the pseudo-canonical distribution

𝑃pc by

𝑃pc(𝑿) ≔ 𝑃(𝑿)𝑒−𝜓∗(𝑿)/𝑘B
𝑍 , 𝑍 ≔ ∫𝑃(𝑿)𝑒−𝜓∗(𝑿)/𝑘B𝑑𝑋, (4.24)

to rewrite the potential into

𝜓∗(𝑿)/𝑘B = ln𝑃(𝑿) − ln𝑃pc(𝑿) − ln𝑍. (4.25)

If we define the stochastic MN excess heat by

̇𝑞ex,MN𝑑𝑡 ≔ −𝛽−1𝛁 ln𝑃pc(𝑿) ∘ 𝑑𝑿 (4.26)

similarly to Eq. (4.9), we get

⟨ ̇𝑞ex,MN⟩
𝑇 = −𝑘B∫𝛁 ln𝑃pc(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋. (4.27)

Therefore, we obtain

Σ̇ex,MN
𝑃 = 𝑑𝑆

𝑑𝑡 −
⟨ ̇𝑞ex,MN⟩

𝑇 (4.28)
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because

𝑑𝑆
𝑑𝑡 −

⟨ ̇𝑞ex,MN⟩
𝑇 = −𝑘B∫𝛁 ln

𝑃(𝑿)
𝑃pc(𝑿)

⋅ 𝑱𝑃(𝑿)𝑑𝑋

= ∫𝛁𝜓∗(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋

= −∫𝜓∗(𝑿)𝛁 ⋅ 𝑱𝑃(𝑿)𝑑𝑋

and the last line provides the MN excess EPR as in Eq. (4.23). Finally, we see that the inequality

Σ̇ex,MN
𝑃 ≥ 0, (4.29)

which is always valid by definition, provides an extention of the Clausius inequality with the definition of excess

heat as in Eq. (4.26).

At this point, defining the housekeeping and excess EPRs is only to provide the generalized Clausius in-

equlaity in a concise form. In this sense, the HS and MN decompositions are not so different. However, as

discussed in the next section, decomposing EPR has another aspect; the decomposed portions can be seen as the

contributions from distinct aspects in the whole dynamics. That is, the housekeeping EPR stems from the exter-

nal driving that brings the system away from equilibrium, while the excess represents the minimum dissipation

without futile cyclic motion. This point of view is no longer associated with any steady states and captured

much better by the MN decomposition.

4.2 Geometric decomposition from the force-current structure

The two definitions can be extended to various systems based on the force-current structure. Essentially, the

generalization of the HS decomposition has been done by 2010’s; on the other hand, the generalizability of the

MN decomposition had not been realized until we and another group found it independently [19, 59].

4.2.1 Drawback of the HS decomposition

Although it is not so obvious which expression of the HS excess and housekeeping EPRs in the Langevin system

to refer to when generalizing it, they are usually generalized based on the expression in Eqs. (4.17) and (4.18)

as [5, 6, 24, 26, 27, 63, 64]

Σ̇hk,HS(𝑥) ≔ ⟨𝐽(𝑥), 𝐹(𝑥ss)⟩, (4.30)

Σ̇ex,HS(𝑥) ≔ ⟨𝐽(𝑥), 𝐹(𝑥) − 𝐹(𝑥ss)⟩. (4.31)

They obviously divide the total EPR (defined in Eq. (3.7)) as

Σ̇(𝑥) = Σ̇hk,HS(𝑥) + Σ̇ex,HS(𝑥), (4.32)

which is the generalized HS decomposition.

Although this definition has been widely adopted in various types of dynamics such as Markov jump pro-

cesses [5], chemical reaction networks [26, 27], and open quantum systems [24, 63], their positivity is not

guaranteed by the force-current structure. In fact, the HS excess EPR can be negative even if there is a stable

steady state [59, 64]. As discussed in Chapters 7 and 9, the steady state in the definition should satisfy some

conditions, which requires the steady state to be similar to equilibrium states.

In addition, the definition explicitly depends on the steady state; this has two problems. First, in nonlinear

systems, we may have multiple (locally) stable steady states [65, 66], or may not have meaningful steady states

due to limit cycles and turbulence [66–70]. Hence, the HS decomposition does not work in these physically

important systems. In addition, the HS decomposition and related decompositions [71, 72] involve steady states,

or in other words, long-time behavior. In this sense, the decomposition is not “local in time.” This can make

the HS decomposition less competent for analyzing the rate of dissipation.
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4.2.2 Geometric decomposition

We can avert these problems by generalizing the MN decomposition. The generalization presented below was

studied in our series of papers [19–21]. We first developed a geometric decomposition that generalizes the MN

decomposition to Markov jump processes and chemical reaction networks in Ref. [19]. Another group also

found a similar generalization at almost the same time independently [59]. We then moved to hydrodynamic

systems [20] and Markovian open quantum systems [21] and established the geometric decomposition there. In

the following, we explain the geometric decomposition based on the force-current strucute. We argue concrete

realizations in later chapters.

We can think of a geometric decomposition by comparing Eq. (4.20) with the geometric expression (2.24).

We define the housekeeping EPR by

Σ̇hk(𝑥) ≔ inf
𝐹′∈𝒞

‖𝐹(𝑥) − 𝐹′‖2𝑥. (4.33)

Here, 𝒞 is the space of the conservative forces, defined by

𝒞 = {−∇𝜓 ∣ 𝜓 ∈ 𝒮0} ⊂ ℱ. (4.34)

As discussed in Sec. 3.3, if the thermodynamic force is conservative, the system is an equilibrium system.

Equation (4.33) provides the squared distance between the actual thermodynamic force and the conservative

spaces, hence it quantifies how nonequilibrium the system is. In other words, the housekeeping EPR is the

dissipation due to the breaking of detailed balance. If the system is detailed balanced, there is no houskeeeping

dissipation.

The housekeeping EPR is always non-negative by definition and never larger than the total EPR as 𝐹′ = 0,
which returns Σ̇(𝑥), falls into the feasible set of minimization. Thus, defining the excess EPR by

Σ̇ex(𝑥) ≔ Σ̇(𝑥) − Σ̇hk(𝑥), (4.35)

we obtain a non-negative decomposition of the EPR,

Σ̇(𝑥) = Σ̇hk(𝑥) + Σ̇ex(𝑥), (4.36)

which we call the geometric decomposition. The geometric decomposition overcomes the problems of the

HS decomposition as the excess EPR is also always non-negative and the decomposition does not rely on the

existence of steady states. All it needs is the force-current structure.

Next, we prove the equality

Σ̇ex(𝑥) = inf
𝐹′∈ℱ

‖𝐹′‖2𝑥 s.t. ∇∗ℳ𝑥(𝐹′) = ∇∗𝐽(𝑥), (4.37)

which generalizes Eq. (4.22). From this expression, we can learn an important meaning of the excess EPR. It

can be rewritten in terms of current as

Σ̇ex(𝑥) = inf
𝐽′∈ℱ

⟨𝐽′,ℳ−1
𝑥 (𝐽′)⟩ s.t. ∇∗𝐽′ = ∇∗𝐽(𝑥), (4.38)

whereℳ−1
𝑥 is the inverse ofℳ𝑥. That is, the excess EPR generally characterizes the dissipation that is required

to induce the irreversible part of the dynamics, ∇∗𝐽(𝑥). If there is no reversible part in the equation of motion,
it is connected to the whole dynamics, and consequently, vanishes in a steady state,

Σ̇ex(𝑥ss) = 0, (4.39)

which is realized by 𝐽′ = 0 in Eq. (4.38). This corresponds to the equality in the generalized Clausius inequality
and is always valid in the HS decomposition. On the other hand, if we have a reversible part, the connection to

the stationarity becomes subtle; we will not generally obtain such an equality. It can be seen as another devia-

tion from the original idea by Oono and Paniconi, which does not exist in the HS decomposition; nevertheless,

the excess EPR of the geometric decomposition never becomes negative to hold much wider range of applica-

tion. Moreover, it has richer connections to other fields such as thermodynamic trade-off relations and optimal

transport theory, as discussed in later chapters.
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Before proving Eq. (4.37), we consider the orthogonal complement of 𝒞 regarding the inner product (3.9).

If a vector 𝐹′ belongs to the orthogonal complement 𝒞⟂, it satisfies

0 = ⟨𝐹′, ∇𝜓⟩𝑥 = ⟨𝜓,∇∗ℳ𝑥(𝐹′)⟩ (4.40)

for any 𝜓 ∈ 𝒮0. Thus, the orthogonal complement is given by

𝒞⟂ = {𝐹′ ∈ ℱ ∣ ∇∗ℳ𝑥(𝐹′) = 0}. (4.41)

In terms of the corresponding current 𝐽′ = ℳ𝑥(𝐹′), we can interpret this space as the forces that induce cyclic
currents, which satisfy

∇∗𝐽′ = 0. (4.42)

Additionally, we define the affine space

𝐹(𝑥) +𝒞⟂ = {𝐹′ ∈ ℱ ∣ ∇∗ℳ𝑥(𝐹′ − 𝐹(𝑥)) = 0}. (4.43)

If a vector 𝐹″ belongs to this space, the corresponding current 𝐽″ =ℳ𝑥(𝐹″) satisfies

∇∗𝐽″ = ∇∗𝐽(𝑥), (4.44)

which indicates that the two currents lead to the same dynamical result and that we can get one by adding or

subtracting cyclic currents to/from the other.

We show Eq. (4.37). Let 𝐹∗ be the minimizer of Eq. (4.33) (see also Fig. 4.1, where 𝐹c(𝑥) corresponds to
𝐹∗). It is the unique minimizer because Eq. (4.37) is a strictly convex optimization. It also possesses these
properties

1. 𝐹∗ ∈ 𝐹(𝑥) +𝒞⟂.

2. 𝐹∗ is the unique intersection between 𝒞 and 𝐹(𝑥) +𝒞⟂.

3. 𝐹∗ = arg min
𝐹′∈𝐹(𝑥)+𝒞⟂

‖𝐹′‖2𝑥.

Once they are confirmed, Eq. (4.37) is soon verified: By definition of 𝒞⟂, the right-hand side is rewritten as

inf
𝐹′∈𝐹(𝑥)+𝒞⟂

‖𝐹′‖2𝑥, (4.45)

which is solved by 𝐹∗ from property 3. It is actually the excess EPR because the total EPR is transformed as

Σ̇(𝑥) = ‖𝐹(𝑥)‖2𝑥 = ‖𝐹(𝑥) − 𝐹∗ + 𝐹∗‖2𝑥
= ‖𝐹(𝑥) − 𝐹∗‖2𝑥 + ‖𝐹∗‖2𝑥 + 2⟨𝐹(𝑥) − 𝐹∗, 𝐹∗⟩𝑥
= ‖𝐹(𝑥) − 𝐹∗‖2𝑥 + ‖𝐹∗‖2𝑥

and ‖𝐹(𝑥) − 𝐹∗‖2𝑥 is the housekeeping EPR. Here, we used 𝐹(𝑥) − 𝐹∗ ∈ 𝒞⟂ and 𝐹∗ ∈ 𝒞.
Although the properties are standard results of linear algebra and functional analysis, here we provide rough

proof (if you are convinced by looking at Fig. 4.1, you can skip the following proof and jump to the last para-

graph). Let us show the first property, i.e., that it satisfies

⟨𝐹(𝑥) − 𝐹∗, 𝐹′⟩𝑥 = 0 (4.46)

for any 𝐹′ ∈ 𝒞. Otherwise,

‖𝐹(𝑥) − 𝐹∗ − 𝛼𝐹′‖2𝑥 = ‖𝐹(𝑥) − 𝐹∗‖2𝑥 + ‖𝐹′‖2𝑥𝛼(𝛼 −
⟨𝐹(𝑥) − 𝐹∗, 𝐹′⟩𝑥

‖𝐹′‖2𝑥
) (4.47)

can be smaller than ‖𝐹(𝑥) − 𝐹∗‖2𝑥 by setting

𝛼 =
⟨𝐹(𝑥) − 𝐹∗, 𝐹′⟩𝑥

2‖𝐹′‖2𝑥
(4.48)
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Conservative 
subspace

Orthogonal
complement

Figure 4.1: Schematic diagram of the geometric decomposition. On the one hand, we can see that the thermo-

dynamic force is orthogonally projected to the conservative subspace 𝒞. The projected (conservative) force
𝐹c(𝑥) = −∇𝜙∗(𝑥) provides the excess EPR. The difference (nonconservative force) 𝐹nc(𝑥) leads to the house-
keeping EPR. On the other hand, the nonconservative force 𝐹nc(𝑥) can be regarded as providing the distance
between the origin (zero force) 0 and the affine space 𝐹(𝑥)+𝒞⟂. This interpretation corresponds to Eq. (4.37).

This figure is adapted from Ref. [21].

because then

‖𝐹(𝑥) − 𝐹∗ − 𝛼𝐹′‖2𝑥 = ‖𝐹(𝑥) − 𝐹∗‖2𝑥 −
(⟨𝐹(𝑥) − 𝐹∗, 𝐹′⟩𝑥)2

4‖𝐹′‖2𝑥
< ‖𝐹(𝑥) − 𝐹∗‖2𝑥, (4.49)

which contradicts the minimization property of 𝐹∗.
To show the second property, the uniqueness, we assume there exists 𝐹′ that also belongs to the intersection

𝒞∩(𝐹(𝑥)+𝒞⟂). Then, 𝐹′−𝐹∗ ∈ 𝒞∩𝒞⟂. Therefore, ‖𝐹′−𝐹∗‖2𝑥 = ⟨𝐹′−𝐹∗, 𝐹′−𝐹∗⟩𝑥 = 0, which concludes
𝐹′ = 𝐹∗. Thus, 𝐹∗ must be the unique intersection of 𝒞 and 𝐹(𝑥) +𝒞⟂.

We finally show the third property. Take 𝐹′ ∈ 𝐹(𝑥) +𝒞⟂. Then, because 𝐹∗ ∈ 𝒞 and 𝐹′ − 𝐹∗ ∈ 𝒞⟂, we

get

‖𝐹′‖2𝑥 = ‖𝐹′ − 𝐹∗ + 𝐹∗‖2𝑥 (4.50)

= ‖𝐹′ − 𝐹∗‖2𝑥 + ‖𝐹∗‖2𝑥 + 2⟨𝐹′ − 𝐹∗, 𝐹∗⟩𝑥 (4.51)

= ‖𝐹′ − 𝐹∗‖2𝑥 + ‖𝐹∗‖2𝑥. (4.52)

Therefore, ‖𝐹′‖2𝑥 is bigger than ‖𝐹∗‖2𝑥 as long as 𝐹′ ≠ 𝐹∗; thus, 𝐹∗ is the unique optimizer of the minimization
inf𝐹′∈𝐹(𝑥)+𝒞⟂‖𝐹′‖2𝑥.

In summary, the geometric decomposition divides the total EPR into the housekeeping and excess EPRs pro-

vided by minimizations as in Eqs. (4.33) and (4.37), which provide orthogonal projection of the thermodynamic

force. Those minimizations are accomplished by a unique optimizer. The situation is depicted schematically

as in Fig. 4.1, which roughly shows the validity of the three mathematical properties. Hereafter, we write the

optimizer as 𝐹c(𝑥) since it belongs to the conservative subspace 𝒞. We also let 𝐹nc(𝑥) denote the difference
𝐹(𝑥) − 𝐹c(𝑥) (nc stands for “nonconservative”). As a result, we obtain the explicit representations of the de-
composition

Σ̇hk(𝑥) = ‖𝐹nc(𝑥)‖2𝑥, (4.53)

Σ̇ex(𝑥) = ‖𝐹c(𝑥)‖2𝑥. (4.54)

The induced currents 𝐽c(𝑥) =ℳ𝑥(𝐹c(𝑥)) and 𝐽nc(𝑥) =ℳ𝑥(𝐹nc(𝑥)) satisfy

∇∗𝐽c(𝑥) = ∇𝐽(𝑥), ∇∗𝐽nc(𝑥) = 0 (4.55)
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because 𝐹nc(𝑥) ∈ 𝒞⟂. The conservative force has a potential 𝜙∗(𝑥) such that 𝐹c(𝑥) = −∇𝜙∗(𝑥). Combining it
with the first equation in Eq. (4.55), we find

∇∗ℳ𝑥(∇𝜙∗(𝑥)) = −∇𝐽(𝑥) = −𝜕𝑥𝜕𝑡 + 𝑓rev(𝑥). (4.56)

In practice, this equation can be used to obtain the decomposition directly. Up to the null space of ∇, ∇∗ℳ𝑥∇
tends to be an invertible operator, and we can derive an explicit expression

𝜙∗(𝑥) = −(∇∗ℳ𝑥∇)+(∇𝐽(𝑥)), (4.57)

where + indicates a kind of generalized inverse.

4.2.3 Maximization formula

In addition to the minimization representations, the geometric decomposition also has maximization expres-

sions:

Σ̇hk(𝑥) = sup
𝐹′∈𝒞⟂

|⟨𝐹(𝑥), 𝐹′⟩𝑥|2

‖𝐹′‖2𝑥
, (4.58)

Σ̇ex(𝑥) = sup
𝐹′∈𝒞

|⟨𝐹(𝑥), 𝐹′⟩𝑥|2

‖𝐹′‖2𝑥
. (4.59)

The total EPR can also be given similarly as

Σ̇(𝑥) = sup
𝐹′∈ℱ

|⟨𝐹(𝑥), 𝐹′⟩𝑥|2

‖𝐹′‖2𝑥
. (4.60)

Those formulas are proved by the Cauchy–Schwarz inequality. We first show Eq. (4.60). For any 𝐹′ ∈ ℱ, we
have

|⟨𝐹(𝑥), 𝐹′⟩𝑥|2 ≤ ‖𝐹′‖2𝑥‖𝐹(𝑥)‖2𝑥 (4.61)

and the equality is acheived by 𝐹′ = 𝐹(𝑥). By dividing both sides by ‖𝐹′‖2𝑥 and considering the maximization
regarding 𝐹′, we obtain Eq. (4.60).

If 𝐹′ is restricted to 𝒞, since ⟨𝐹nc(𝑥), 𝐹′⟩𝑥 = 0, we have

|⟨𝐹(𝑥), 𝐹′⟩𝑥|2 = |⟨𝐹c(𝑥), 𝐹′⟩𝑥|2 ≤ ‖𝐹′‖2𝑥‖𝐹c(𝑥)‖2𝑥 (4.62)

and the equality can be acheived by 𝐹′ = 𝐹c(𝑥), which implies Eq. (4.59) because Σ̇ex(𝑥) = ‖𝐹c(𝑥)‖2𝑥. Equa-
tion (4.58) is also given in the same way by restricting 𝐹′ to 𝒞⟂.

4.2.4 Schnakenberg formula

In section 3.4, we proved Eq. (3.19) for steady states. It was key that the steady-state current is expressed by an

operator 𝒯 that characterizes the cycles. Now, the nonconservative current 𝐽nc(𝑥) =ℳ𝑥(𝐹nc(𝑥)) also satisfies

∇∗𝐽nc(𝑥) = 0. (4.63)

Therefore, there is 𝑗†𝑐 such that 𝐽nc(𝑥) = 𝒯(𝑗†𝑐 ). We also define

𝑓†𝑐 = 𝒯∗(𝐹nc(𝑥)) (4.64)

to obtain the generalization of the Schnakenberg formula (3.19)

Σ̇hk(𝑥) = ⟨𝑗†𝑐 , 𝑓†𝑐 ⟩. (4.65)

While the original equality is only available in a steady state, Eq. (4.65) holds in any state. This is because the

housekeeping EPR reflects the nonequilibrium aspect of the system at the moment.

We expect the formula for the housekeeping EPR can be useful for analyzing nonequilibrium nonstationary

states, as the cyclic point of view provided by the original Schnakenberg formula has offered insights into

nonequilibrium steady states [73–76].





Chapter 5

Thermodynamic trade-off relations

Arguably, various thermodynamic trade-off relations are one of the biggest achievements of modern stochastic

thermodynamics [7, 9]. It reveals universal trade-offs between the entropy production, the fundamental “cost”

in physics, and other costs like accuracy or speed.

In this chapter, we illustrate general ideas by reviewing relevant results in Langevin systems, and explain

that the force-current structure can be used to generally discuss them.

5.1 Review

5.1.1 Overview

The second law of thermodynamics is generally stated as

Σ̇(𝑥) ≥ 0. (5.1)

The inequality expresses that the total entropy of the universe must not decrease at every instance. Importantly,

it provides a universal restriction to any physical processes.

The equailty is achieved when we manipulate the system very slowly, i.e., quasi-statistically. On the other

hand, one cannot deduce any information about finite speed processes other than the inequality, which becomes

looser as the process gets faster. Moreover, as discussed in the last chapter, if there are external effects that break

detailed balance, the equality will never be achieved. Still, we can tighten the inequality by the housekeeping-

excess decomposition as we have seen.

There is another direction. In the last decade, stochastic thermodynamics has found several universal bounds

that generalize the second law of thermodynamics. For example, the thermodynamic uncertainty relation (TUR)

is a lower bound on the EPR, typically provided as

Σ̇(𝑥) ≥
𝑗2

𝐷 (5.2)

with a flow 𝑗 and a diffusivity or fluctuation measure𝐷. The inequality quantitatively shows that the dissipation
is inevitable when (1) we want to gain a flow 𝑗 and (2) we want to reduce fluctuations 𝐷.

It was first proposed in a simple model of stochastic reaction in a steady state [31, 36], and later proved

for general Markov jump processes in steady states [32, 77]. Following these findings, the TUR is extended in

several directions, including inequalities for processes starting form arbitrary initial states during an arbitrary

time interval, in both classical and quantum systems [19, 28, 29, 34, 35, 37, 39, 40, 60, 77–90]. We proposed

its generalization in deterministic chemical reaction networks [18].

The TUR can be practically useful: First, it leads to trade-offs between power and efficiency [91, 92]. These

results go beyond Carnot’s bound on the efficiency of heat engines [61]. Moreover, it can be used to estimate

the value of EPR, which is difficult to directly measure [37, 85, 93, 94].

Another type of trade-off is the thermodynamic speed limit (TSL); it is typically given by

𝜏Σ𝜏 = 𝜏∫
𝜏

0
Σ̇(𝑥𝑡)𝑑𝑡 ≥ 𝒟(𝑥(0), 𝑥(𝜏))2, (5.3)

31
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where 𝜏 is a time interval and 𝒟(𝑥(0), 𝑥(𝜏)) is a length between states. It indicates that to change a state into
another one distant from it by𝒟(𝑥(0), 𝑥(𝜏)), we cannot simultaneously decrease the time and EPR.

A general speed limit involving entropy production was first given in Ref. [41], which used the total vari-

ation as the distance measure. Similar bounds were derived in open quantum systems [43], chemical reaction

networks [18], and evolutionary processes [95]. After that, it has been realized that we can utilize a more so-

phisticated distance, called the Wasserstein distance [19, 28, 29, 39, 44–46, 60, 96–99] (earlier applications to

stochastic thermodynamics can be found in Refs. [100–102]). The Wasserstein distance is studied in optimal

transport theory, a branch of mathematics [48]. These bounds are sometimes called classical speed limits in

comparison with the quantum speed limit [103–106] or speed limit theorems [107], but we call them thermo-

dynamic speed limits to emphasize that they involve the fundamental thermodynamic cost, entropy production.

In this section, we review these relations more concretely via the Langevin dynamics. Then, we will reveal

how they can be derived from the force-current structure.

5.1.2 Thermodynamic uncertainty relation

Let us consider an observable 𝒪(𝑿) and its expectation value

⟨𝒪⟩ = ∫𝒪(𝑿)𝑃(𝑿)𝑑𝑋. (5.4)

In an infinitesimal time interval 𝑑𝑡, the observable changes as

𝑑𝒪 = 𝒪(𝑿 + 𝑑𝑿) − 𝒪(𝑿) = 𝛁𝒪(𝑿) ∘ 𝑑𝑿, (5.5)

where we used the chain rule (2.12) to obtain the last equality. We also have

⟨(𝑑𝒪)2⟩ = 2𝐷⟨|𝛁𝒪(𝑿)|2⟩𝑑𝑡 (5.6)

up to the leading order (hereafter we neglect terms of order smaller than 𝑑𝑡). Therefore, the average and variance
of the change are given by

⟨𝑑𝒪⟩ = 𝑑𝑡∫𝛁𝒪(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋, (5.7)

Var(𝑑𝒪) = 𝑑𝑡 2𝐷∫ |𝛁𝒪(𝑿)|2𝑃(𝑿)𝑑𝑋, (5.8)

whereVar is the variance and defined by ⟨𝑑𝒪2⟩−⟨𝑑𝒪⟩2. We find that ⟨𝑑𝒪⟩/𝑑𝑡 corresponds to the time derivative
of ⟨𝒪⟩:

𝑑
𝑑𝑡⟨𝒪⟩ = ∫𝒪(𝑿)𝜕𝑃𝜕𝑡 (𝑿)𝑑𝑋 = −∫𝒪(𝑿)𝛁 ⋅ 𝑱𝑃(𝑿)𝑑𝑋

= ∫𝛁𝒪(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋. (5.9)

We also define the diffusivity 𝐷𝒪 by

𝐷𝒪 ≔ lim
𝑑𝑡→0

Var(𝑑𝒪)
2𝑑𝑡 = 𝐷∫ |𝛁𝒪(𝑿)|2𝑃(𝑿)𝑑𝑋. (5.10)

If 𝒪 = 𝑋𝑖, 𝐷𝑋𝑖 becomes the diffusion constant 𝐷. In general, 𝐷𝒪 quantifies how easily the observable diffuses,

i.e., becomes uncertain.

The changing rate 𝑑𝑡⟨𝒪⟩ = 𝑑⟨𝒪⟩/𝑑𝑡 and the diffusivity yield the lower bound on the EPR [80]

Σ̇𝑃 ≥ 𝑘B
(𝑑𝑡⟨𝒪⟩)2

𝐷𝒪
. (5.11)

We call this kind of lower bounds on the EPR short-time TURs. The short-time TUR indicates a univeral trade-

off between the dissipation Σ̇𝑃 and the diffusivity relative to the changing rate; i.e., if we want to keep the

dynamics accurate, we need dissipation.
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The short-time TUR is proved by just applying the Cauchy–Schwarz inequality to 𝑑𝑡⟨𝒪⟩:

(𝑑𝑡⟨𝒪⟩)2 = (∫𝛁𝒪(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋)
2

≤ ∫|𝛁𝒪(𝑿)|2𝐷𝑃(𝑿)𝑑𝑋 ∫
|𝑱𝑃(𝑿)|2

𝐷𝑃(𝑿)
𝑑𝑋

= 𝐷𝒪∫
1
𝑘B
𝑱𝑃(𝑿) ⋅ 𝑭𝑃(𝑿)𝑑𝑋 = 1

𝑘B
𝐷𝒪Σ̇𝑃,

where we used Eq. (2.23) in the third line.

In the Langevin dynamics, we can extend the short-time TUR in two ways. First, the observable can depend

on the trajectory rather than the instantaneous state. We consider a current-like observable with weight𝒘 defined

by

𝑑𝒥𝒘 = 𝒘(𝑿) ∘ 𝑑𝑿. (5.12)

By replacing 𝛁𝒪 in the above proof with 𝒘, we can generalize the inequality to current-like observables as

Σ̇𝑃 ≥ 𝑘B
⟨𝒥𝒘⟩2

𝐷𝒥𝒘
, (5.13)

where

⟨𝒥𝒘⟩ ≔ lim
𝑑𝑡→0

⟨𝑑𝒥𝒘⟩
𝑑𝑡 = ∫𝒘(𝑿) ⋅ 𝑱𝑃(𝑿)𝑑𝑋, (5.14)

𝐷𝒥𝒘 ≔ lim
𝑑𝑡→0

Var(𝑑𝒥𝒘)
2𝑑𝑡 = 𝐷∫ |𝒘(𝑿)|2𝑃(𝑿)𝑑𝑋. (5.15)

The short-time TUR for the state-dependent observable 𝒪 is derived by setting 𝒘 = 𝛁𝒪. Thus, the lower

bound in Eq. (5.13) is more general than that in Eq. (5.11). However, we should be aware that to measure the

current-like observable experimentally, we need to obtain two-point statistics, which is harder to know than the

moments of observables that are determined by the instantaneous state.

Second, the EPR can be replaced by the excess EPR as

Σ̇ex𝑃 ≥ 𝑘B
(𝑑𝑡⟨𝒪⟩)2

𝐷𝒪
. (5.16)

Let 𝜓∗ be the potential that provides the excess EPR (Sec. 4.1.3). Since it satisfies 𝛁 ⋅ 𝑱𝑃(𝑿) = −𝜇𝑇𝛁 ⋅
(𝑃(𝑿)𝛁𝜓∗(𝑿)), the proof of the short-time TUR can be recast as

(𝑑𝑡⟨𝒪⟩)2 = ( −∫𝒪(𝑿)𝛁 ⋅ 𝑱𝑃(𝑿)𝑑𝑋)
2

= (𝜇𝑇∫𝒪(𝑿)𝛁 ⋅ (𝑃(𝑿)𝛁𝜓∗(𝑿))𝑑𝑋)
2

= ( −∫(𝜇𝑇𝑃(𝑿))𝛁𝒪(𝑿) ⋅ 𝛁𝜓∗(𝑿)𝑑𝑋)
2

≤ ∫𝜇𝑇𝑃(𝑿)|𝛁𝒪(𝑿)|2𝑑𝑋 ∫𝜇𝑇𝑃(𝑿)|𝛁𝜓∗(𝑿)|2𝑑𝑋

= 1
𝑘B
𝐷𝒪Σ̇ex𝑃 ,

where we used the Cauchy–Schwarz inequality with 𝜇𝑇𝑃(𝑿) being the metric in the fourth line. Because the
excess EPR is never larger than the total EPR, Eq. (5.16) also tightens the short-time TUR (5.11).
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5.1.3 Thermodynamic speed limit

Next, we consider transforming an ensemble 𝑃𝑎(𝑿) to 𝑃𝑏(𝑿). Optimal transport theory provides us with a dis-
tance function, called the Wasserstein distance, in terms of transportation as [48]

𝒲(𝑃𝑎, 𝑃𝑏) = inf
Π √

∫∫|𝑿 − 𝒀|2Π(𝑿, 𝒀)𝑑𝑋𝑑𝑌, (5.17)

where Π must connect the two distributions as

∫Π(𝑿, 𝒀)𝑑𝑌 = 𝑃𝑎(𝑿), ∫Π(𝑿, 𝒀)𝑑𝑋 = 𝑃𝑏(𝒀). (5.18)

We will provide a detailed introduction to optimal transport theory inAppendix. A. One key point of theWasser-

stein distance is the following expression called the Benamou–Brenier formula [48, 108]:

𝒲(𝑃𝑎, 𝑃𝑏) = inf
𝑝,𝜓√

𝜏∫
𝜏

0
∫𝑝(𝑡, 𝑿)|𝛁𝜓(𝑡, 𝑿)|2𝑑𝑋𝑑𝑡 (5.19)

with conditions

𝑝(0) = 𝑃𝑎, 𝑝(𝜏) = 𝑃𝑏,
𝜕𝑝
𝜕𝑡 (𝑡, 𝑿) = −𝛁 ⋅ (𝑝(𝑡, 𝑿)𝛁𝜓(𝑡, 𝑿)). (5.20)

Note that the time evolution of the actual distribution 𝑃(𝑡) can satisfy these conditions when we set 𝑃𝑎 = 𝑃(0)
and 𝑃𝑏 = 𝑃(𝜏); we can use the potential 𝜓∗ that provides the excess EPR (Sec. 4.1.3) because it satisfies

𝜕𝑃
𝜕𝑡 (𝑿) = −𝜇𝑇𝛁 ⋅ (𝑃(𝑿)𝛁𝜓∗(𝑿)). (5.21)

With the actual trajectory of the distribution and the potential 𝜓∗, we get the upper bound of the Wasserstein

distance

𝒲(𝑃(0), 𝑃(𝜏)) ≤
√
𝜏(𝜇𝑇)2∫

𝜏

0
∫𝑃(𝑡, 𝑿)|𝛁𝜓∗(𝑡, 𝑿)|2𝑑𝑋𝑑𝑡. (5.22)

Here, remember that the potential provided the excess EPR as

Σ̇ex𝑃 = 𝜇𝑇∫𝑃(𝑿)|𝛁𝜓∗(𝑿)|2𝑑𝑋. (5.23)

Therefore, the inequality turns into a lower bound on the excess entropy production (EP)

Σex𝜏 = ∫
𝜏

0
Σ̇ex𝑃 𝑑𝑡 ≥

𝒲(𝑃(0), 𝑃(𝜏))2
𝜇𝑇𝜏 . (5.24)

The equality is satisfied when the time evolution is optimal, i.e., it provides the Wasserstein distance:

𝒲(𝑃(0), 𝑃(𝜏)) =
√
𝜏∫

𝜏

0
∫𝑃∗(𝑡, 𝑿)|𝛁𝜓∗(𝑡, 𝑿)|2𝑑𝑋𝑑𝑡, (5.25)

where 𝑃∗(𝑡) gives the optimal time evolution. This condition is a finite-time extension of the quasistatic process,
and the lower bound is achieved in a finite-speed protocol. According to the optimal transport theory, the optimal

solution satisfies the constant-speed property [48]

∫𝑃∗(𝑡, 𝑿)|𝛁𝜓∗(𝑡, 𝑿)|2𝑑𝑋 = const. (5.26)

Equation (5.24) can be rearranged into the TSL [29]

𝜏Σex𝜏 ≥ 𝒲(𝑃(0), 𝑃(𝜏))2
𝜇𝑇 . (5.27)
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From this inequality, we can see that if one wants to change the system’s state from 𝑃(0) into 𝑃(𝜏), the time
interval and the excess EPR cannot be reduced simultaneously.

Of course, the excess EPR is not larger than the total EPR, we also have the weaker inequality [45]

𝜏Σ𝜏 ≥
𝒲(𝑃(0), 𝑃(𝜏))2

𝜇𝑇 . (5.28)

However, it is natural that we obtained the stronger one (5.27), which involves the excess EPR, because the

excess EPR ideally provides the minimum EPR to cause the dynamics. It represents the inevitable dissipation

in the state change, which conflicts with the required time.

5.2 Thermodynamic trade-off relations from the force-current structure

5.2.1 Thermodynamic uncertainty relation

From the force-current structure, we can derive the short-time-TUR-like inequality

Σ̇ex(𝑥) ≥
|⟨∇∗𝐽(𝑥), 𝒪⟩|2

Δ𝒪(𝑥)
, (5.29)

where we define

Δ𝒪(𝑥) ≔ ‖∇𝒪‖2𝑥 = ⟨∇𝒪,ℳ𝑥(∇𝒪)⟩. (5.30)

In the Langevin dynamics, the mapℳ𝑥 is identified with the multiplication of 𝜇𝑇𝑃(𝑿), so we find

Δ𝒪(𝑥) = ⟨𝛁𝒪, 𝜇𝑇𝑃𝛁𝒪⟩ = 𝐷
𝑘B

∫|𝛁𝒪(𝑿)|2𝑃(𝑿)𝑑𝑋 = 1
𝑘B
𝐷𝒪. (5.31)

Moreover, since there is no reversible term, we have

⟨∇∗𝐽(𝑥), 𝒪⟩ = ⟨𝜕𝑥/𝜕𝑡, 𝒪⟩ = 𝑑𝑡⟨𝑥, 𝒪⟩. (5.32)

Therefore, Eq. (5.29) generalizes Eq. (5.16).

In general, however, Δ𝒪(𝑥) defined in Eq. (5.30) is not necessarily physically interpretable, unlike in the
Langevin case. Nonetheless, Δ𝒪(𝑥) is usually upper bounded by what can be naturally understood as a measure
of fluctuations. With the upper bound onΔ𝒪(𝑥) denoted by𝒟𝒪(𝑥), we can rewrite Eq. (5.29) into the generalized
short-time TUR

Σ̇ex(𝑥) ≥
|⟨𝐽(𝑥), ∇𝒪⟩|2

𝒟𝒪(𝑥)
. (5.33)

Again, if there is no reversible term, the numerator reads (𝑑𝑡⟨𝑥, 𝒪⟩)2 and we get

Σ̇ex(𝑥) ≥
|𝑑𝑡⟨𝑥, 𝒪⟩|2

𝒟𝒪(𝑥)
. (5.34)

Let us prove Eq. (5.29). Remember that the conservative current 𝐽c(𝑥) satisfies ∇∗𝐽c(𝑥) = ∇∗𝐽(𝑥). Thus,
we have

⟨∇∗𝐽(𝑥), 𝒪⟩ = ⟨∇∗𝐽c(𝑥), 𝒪⟩. (5.35)

We apply the Cauchy–Schwarz inequality to this quantity to get

|⟨∇∗𝐽(𝑥), 𝒪⟩|2 = |⟨∇∗𝐽c(𝑥), 𝒪⟩|2 = |⟨𝐽c(𝑥), ∇𝒪⟩|2

= |⟨ℳ𝑥(𝐹c(𝑥)), ∇𝒪⟩|2 = |⟨𝐹c(𝑥), ∇𝒪⟩𝑥|2

≤ ‖𝐹c(𝑥)‖2𝑥‖∇𝒪‖2𝑥 = Σ̇ex(𝑥)Δ𝒪(𝑥),

which shows Eq. (5.29).
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5.2.2 Thermodynamic speed limit

We can define a generalized Wasserstein distance via the Benamou–Brenier formula:

𝒲(𝑥𝑎, 𝑥𝑏) ≔ inf
𝜉,𝜓√

𝜏∫
𝜏

0
‖∇𝜓(𝑡)‖2𝜉(𝑡)𝑑𝑡, (5.36)

where 𝜉 and 𝜓 must satisfy

𝜉(0) = 𝑥𝑎, 𝜉(𝜏) = 𝑥𝑏,
𝜕𝜉
𝜕𝑡 = −∇∗ℳ𝜉(∇𝜓). (5.37)

This definition reproduces the Wasserstein distance in the Langevin dynamics multiplied by a constant:

𝒲(𝑥𝑎, 𝑥𝑏) = 𝜇𝑇𝒲(𝑃𝑎, 𝑃𝑏). (5.38)

Here, 𝜇𝑇 appears because the norm ‖⋅‖𝑥 involvesℳ𝑥, which becomes 𝜇𝑇𝑃(𝑿) in Langevin systems. Although
whether Eq. (5.36) gives a mathematically proper distance depends on the situation, it has been proven true for

several cases [19, 30, 109, 110].

If we do not have a reversible term, the time evolution 𝑥(𝑡) satisfies these conditions and TSLs will be
derived. First, note that the conservative force 𝐹c(𝑥) satisfies

𝜕𝑥
𝜕𝑡 = ∇∗𝐽(𝑥) = ∇∗ℳ𝑥(𝐹c(𝑥)). (5.39)

In addition, it has a potential such that 𝐹c(𝑥) = −∇𝜙∗(𝑥); i.e., we have

𝜕𝑥
𝜕𝑡 = −∇∗ℳ𝜉(∇𝜙∗(𝑥)). (5.40)

Therefore, the pair (𝑥, 𝜙∗) falls into the feasible set of the minimization (5.36).
As a consequence, we obtain the inequality

𝒲(𝑥(0), 𝑥(𝜏))2 ≤ 𝜏∫
𝜏

0
‖𝐹c(𝑥(𝑡))‖2𝑥(𝑡)𝑑𝑡 = 𝜏Σex𝜏 . (5.41)

First, this inequality can be seen as a lower bound on the excess EP

Σex𝜏 ≥ 𝒲(𝑥(0), 𝑥(𝜏))2
𝜏 . (5.42)

By rearranging the equation, we also obtain the TSL

𝜏Σex𝜏 ≥𝒲(𝑥(0), 𝑥(𝜏))2, (5.43)

which shows a universal trade-off between dissipation and time. Here, we should be aware that the generalized

Wasserstein distance may involve information of the dynamics becauseℳ𝑥 is contained in the definition. Thus,

from the operational viewpoint, what we can manipulate in minimizing the excess dissipation becomes subtle.

Even though, fixing the distance𝒲(𝑥(0), 𝑥(𝜏)), which implies restrictions on the manipulation of the system,
we cannot reduce the dissipation and the time required for the change arbitrarily.

5.2.3 Related literature

Here, we mention a few related results.

In Sec. 5.2.1, we derived a short-time and quadratic TUR (5.33); but there are other types of TURs. First,

TURs for a finite-time interval exist [34, 35, 84, 89]. They require the notion of joint distribution, which is

elusive in deterministic systems, so they have only been obtained in stochastic systems. Finite-time TURs

involving the geometric decomposition are discussed in Refs. [19, 28, 29].

In addition, there have recently been found nonlinear (non-quadratic) bounds [39, 60, 88, 90]. They involve

nonlinear functions, such as the inverse of 𝑥 tanh𝑥, which generalize the quadratic function 𝑥2. As a result,
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we can get restrictions tighter than the conventional inequalites. It is an interesting direction to discuss such

nonlinear bounds in terms of the nonlinear Onsager relation mentioned in Sec. 3.2.3.

Finally, we point out that while we used the geometric excess EPR to provide the thermodynamic trade-off

relations, the HS excess EPR can also be employed [41, 88, 90, 111, 112]. Nonetheless, the result will only be

valid in systems that have special steady states. Moreover, in talking about short-time TURs, the “local-in-time”

nature would make the geometric excess EPR more preferrable. Furthermore, existing research has shown that

the geometric decomposition fits much better to the optimal transport theory [19, 28–30, 46, 60].
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Chapter 6

Markov jump processes

From this section, we consider various types of physical systems as concrete examples of the general theory

developed in the preceding sections. In this section, we deal with stochastic processes with discrete degrees of

freedom, called Markov jump processes. They are one of the two main models studied in stochastic thermody-

namics, along with the Langevin systems.

6.1 Notation

In this and the next chapter, we consider several quantities with discrete labels, such as probabilities 𝑝𝑖. We use

vector notation like ⃗𝑎 to represent a column vector, (𝑎1, 𝑎2,… , 𝑎𝑛)T, where T indicates transposition. We also

define the log and exponential of a vector by

ln ⃗𝑎 ≔ (ln 𝑎1,… , ln 𝑎𝑛)T, exp ⃗𝑎 ≔ (𝑒𝑎1,… , 𝑒𝑎𝑛). (6.1)

6.2 Dynamics

6.2.1 Setup

Consider a system with 𝑁 discrete microstates. We take the occupation probability distribution ⃗𝑝 = (𝑝𝑖)𝑁𝑖=1 as
the fundamental variable 𝑥. Thus, the state space is 𝒮0 = ℝ𝑁 and the subset is the positive orthant 𝒮 = ℝ𝑁

>0.

A probability distribution satisfies the normalization ∑𝑖 𝑝𝑖 = 1, which we consider as a conservation law

⃗𝜆prob = (1,… , 1)T ∈ 𝒮.
In a Markov jump process (MJP), the system in microstate 𝑖 at time 𝑡 jumps to 𝑗 at probability 𝑅𝜈𝑗𝑖(𝑡)𝑑𝑡

after infinitesimal time interval 𝑑𝑡. Here, 𝜈 indicates the “route” used in the jump. Physically, 𝜈 designates the
noise source that induces the jump, like a thermal bath. We define 𝑅𝑖𝑗(𝑡) ≔ ∑𝜈 𝑅

𝜈
𝑖𝑗(𝑡). Then, the probability

distribution is updated by

𝑝𝑖(𝑡 + 𝑑𝑡) = 𝑝𝑖(𝑡) − ∑
𝑗(≠𝑖)

𝑅𝑗𝑖(𝑡)𝑝𝑖(𝑡)𝑑𝑡 + ∑
𝑗(≠𝑖)

𝑅𝑖𝑗(𝑡)𝑝𝑗(𝑡)𝑑𝑡, (6.2)

where the second and third terms respectively represent the outflow from state 𝑖 and the inflow into it. Therefore,

⃗𝑝 obeys the master equation

𝑑𝑝𝑖
𝑑𝑡 = ∑

𝑗(≠𝑖)
(𝑅𝑖𝑗(𝑡)𝑝𝑗(𝑡) − 𝑅𝑗𝑖(𝑡)𝑝𝑖(𝑡)). (6.3)

Since 𝑗 = 𝑖 does not matter in the summation, it can also be written as

𝑑𝑝𝑖
𝑑𝑡 = ∑

𝑗
(𝑅𝑖𝑗(𝑡)𝑝𝑗(𝑡) − 𝑅𝑗𝑖(𝑡)𝑝𝑖(𝑡)). (6.4)

regardless of the definition of 𝑅𝑖𝑖(𝑡). If we define 𝑅𝑖𝑖(𝑡) by

𝑅𝑖𝑖(𝑡) ≔ − ∑
𝑗(≠𝑖)

𝑅𝑗𝑖(𝑡), (6.5)

41
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Eq. (6.3) is rewritten into

𝑑𝑝𝑖
𝑑𝑡 = ∑

𝑗
𝑅𝑖𝑗(𝑡)𝑝𝑗(𝑡). (6.6)

With a matrix 𝑅(𝑡) = (𝑅𝑖𝑗(𝑡)), it further reads

𝑑 ⃗𝑝
𝑑𝑡 = 𝑅(𝑡) ⃗𝑝(𝑡). (6.7)

By defining 𝑅𝜈(𝑡) = (𝑅𝜈𝑖𝑗(𝑡)), it is disassembled as

𝑑 ⃗𝑝
𝑑𝑡 = ∑

𝜈
𝑅𝜈(𝑡) ⃗𝑝(𝑡). (6.8)

Hereafter, we make the time dependence implicit for simplicity.

In order to discuss thermodynamics, we need to assume microscopic reversibility. That is, we assume that

if 𝑅𝜈𝑖𝑗 > 0, then 𝑅𝜈𝑗𝑖 > 0. On the other hand, we do not necessarily assume that MJPs are irreducible, i.e., every

state can be reached from any state after certain time at finite probability. Suppose the microstates are separated

into two groups, 𝐴 and 𝐵, which are respectively irreducible and cannot reach each other. Then, the probabilities
are respectively conserved;

𝑃𝐴 = ∑
𝑖∈𝐴

𝑝𝑖, 𝑃𝐵 = ∑
𝑖∈𝐵

𝑝𝑖 (6.9)

are constant and satisfy 𝑃𝐴 + 𝑃𝐵 = 1. These equalities can be captured by the conservation laws

𝜆𝐴𝑖 = {
1 if 𝑖 ∈ 𝐴
0 if 𝑖 ∈ 𝐵

, 𝜆𝐵𝑖 = {
0 if 𝑖 ∈ 𝐴
1 if 𝑖 ∈ 𝐵

(6.10)

because then we have

⟨ ⃗𝜆𝐴, ⃗𝑝⟩ = 𝑃𝐴, ⟨ ⃗𝜆𝐵, ⃗𝑝⟩ = 𝑃𝐵. (6.11)

Note that the conservation of the total probability ⃗𝜆prob = (1,… , 1)T is not linearly independent of those two
vectors.

6.2.2 Continuity equation

At this stage, the master equation (6.7) does not have the form of continuity equation. To find the gradient

operator in MJPs, we need to refer to a branch of mathematics called algebraic graph theory [113].

Consider a directed graph that has nodes𝑉 = {1, 2,… ,𝑁} and directed edges𝐸, which connect nodes. While

each node is identified as a discrete state, edges are supposed to represent the connectivity between states; we

have either of edges 𝑒 = (𝑖, 𝑗; 𝜈) and −𝑒 = (𝑗, 𝑖; 𝜈) in 𝐸 when 𝑅𝜈𝑖𝑗 > 0. Here, 𝑒 = (𝑖, 𝑗; 𝜈) represents the jump
from 𝑖 to 𝑗 mediated by 𝜈, and −𝑒 indicates the reversed jump. For convenience, we assume that if 𝑒 ∈ 𝐸 then

−𝑒 ∉ 𝐸. The staring node of 𝑒 is denoted by 𝑠(𝑒), while the terminal node 𝑡(𝑒). We also write the mediating

bath as 𝜈(𝑒). Thus, 𝑅𝑒 indicates 𝑅
𝜈(𝑒)
𝑡(𝑒)𝑠(𝑒). We say a graph is connected if there are series of edges that connect

any two nodes, regardless of the direction.

The structure of the directed graph can be encoded in a matrix called the incidence matrix [113]. It is a

|𝑉| × |𝐸| matrix defined by

𝐵𝑖𝑒 ≔ 𝛿𝑡(𝑒)𝑖 − 𝛿𝑠(𝑒)𝑖. (6.12)

That is, 𝐵𝑖𝑒 is 1 if 𝑖 is the terminal node of 𝑒, 𝐵𝑖𝑒 = −1 if 𝑖 = 𝑠(𝑒), and otherwise zero. We also introduce the

probability current ⃗𝐽( ⃗𝑝) ∈ ℝ|𝐸| by

𝐽𝑒( ⃗𝑝) ≔ 𝑅𝑒𝑝𝑠(𝑒) − 𝑅−𝑒𝑝𝑡(𝑒). (6.13)



6.3. THERMODYNAMICS 43

The probability fluxes 𝑅𝑒𝑝𝑠(𝑒) and 𝑅−𝑒𝑝𝑡(𝑒) provide the average occurence rates of jumps 𝑒 and −𝑒, and the
current 𝐽𝑒( ⃗𝑝) gives the net frequency of the reversible process. With these quantities, Eq. (6.3) is rewritten as

𝑑𝑝𝑖
𝑑𝑡 = ∑

𝑒∈𝐸
𝐵𝑖𝑒𝐽𝑒( ⃗𝑝) (6.14)

because

∑
𝑒∈𝐸

𝐵𝑖𝑒𝐽𝑒( ⃗𝑝) = ∑
𝑒∈𝐸

(𝛿𝑡(𝑒)𝑖 − 𝛿𝑠(𝑒)𝑖)𝐽𝑒( ⃗𝑝)

= ∑
𝜈

∑
𝑗(≠𝑖)|(𝑗,𝑖;𝜈)∈𝐸

(𝑅𝜈𝑖𝑗𝑝𝑗 − 𝑅𝜈𝑗𝑖𝑝𝑖) −∑
𝜈

∑
𝑗(≠𝑖)|(𝑖,𝑗;𝜈)∈𝐸

(𝑅𝜈𝑗𝑖𝑝𝑖 − 𝑅𝜈𝑖𝑗𝑝𝑗)

= ∑
𝜈

∑
𝑗(≠𝑖)

(𝑅𝜈𝑖𝑗𝑝𝑗 − 𝑅𝜈𝑗𝑖𝑝𝑖).

Now that, we can set ℱ = ℝ|𝐸| and define the gradient operator ∇ ∶ 𝒮0 → ℱ by

∇𝑒𝑖 = 𝐵𝑖𝑒. (6.15)

Since the adjoint is just the transposition ∇∗ = ∇T, we can rewrite the master equation (6.3) into a continuity

equation as

𝑑 ⃗𝑝
𝑑𝑡 = ∇T ⃗𝐽( ⃗𝑝), (6.16)

which is the MJP version of Eq. (3.3). We call ⃗𝑝ss a steady state if it satisfies ∇T ⃗𝐽( ⃗𝑝ss) = 0.
The legitimacy of ∇ as the gradient operator can also be checked by the fact

∇ ⃗𝜆prob = 0, (6.17)

which is proved as

[∇ ⃗𝜆prob]𝑒 = ∑
𝑖
(𝛿𝑡(𝑒)𝑖 − 𝛿𝑠(𝑒)𝑖) = 1 − 1 = 0.

Therefore, conservation law ⃗𝜆prob is a null vector of ∇.

6.3 Thermodynamics

6.3.1 Local equilibrium assumption

We introduce thermodynamics by considering the relation between the transition rates and thermodynamic quan-

tities. Consider the case where the system is connected to a single heat bath at inverse temperature 𝛽. Then, we
can expect that the system will relax to the equilibrium distribution

𝑝eq𝑖 = 𝑒−𝛽𝜖𝑖
𝑍𝛽

, 𝑍𝛽 = ∑
𝑖
𝑒−𝛽𝜖𝑖 (6.18)

and detailed balance holds

𝑅𝑗𝑖𝑝
eq
𝑖 = 𝑅𝑖𝑗𝑝

eq
𝑗 , (6.19)

where 𝜖𝑖 is the energy of 𝑖th state. This can be rearranged into

ln
𝑅𝑗𝑖
𝑅𝑖𝑗

= 𝛽(𝜖𝑖 − 𝜖𝑗). (6.20)

Note that, in the jump 𝑖 → 𝑗, 𝜖𝑖−𝜖𝑗 is the energy flux into the bath and 𝑘B𝛽(𝜖𝑖−𝜖𝑗) provides the entropy change.
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Generalizing Eq. (6.20), we assume the relation

ln
𝑅𝑒
𝑅−𝑒

= Δ𝑠env𝑒 /𝑘B, (6.21)

where Δ𝑠𝑒 denotes the entropy change in the bath in jump 𝑒. Equation (6.21) is often referred to as the local
detailed balance; we can also regard it as the local equilibrium assumption in the MJP because it implicitly

supposes the existence of the thermodynamic structure in the environment. It is essentially a manifestation of

the so-called fluctuation theorem [114–116]. As a result, the entropy change in the environment per unit time

is given by

̇𝑆env = ∑
𝑒
𝐽𝑒( ⃗𝑝)Δ𝑠env𝑒 = 𝑘B∑

𝑒
𝐽𝑒( ⃗𝑝) ln

𝑅𝑒
𝑅−𝑒

. (6.22)

6.3.2 Thermodynamic force

We define the entropy of the system by the Shannon entropy as

𝑠𝑖 = −𝑘B ln𝑝𝑖. (6.23)

On average, the system entropy is given by

𝑆( ⃗𝑝) = −𝑘B∑
𝑖
𝑝𝑖 ln𝑝𝑖 (6.24)

and its changing rate reads

𝑑𝑆
𝑑𝑡 = −𝑘B∑

𝑖

𝑑𝑝𝑖
𝑑𝑡 ln𝑝𝑖

= −𝑘B∑
𝑒
𝐽𝑒( ⃗𝑝)∑

𝑖
∇𝑒𝑖 ln𝑝𝑖

= 𝑘B∑
𝑒
𝐽𝑒( ⃗𝑝) ln

𝑝𝑠(𝑒)
𝑝𝑡(𝑒)

, (6.25)

where we used∑𝑖 𝑑𝑝𝑖/𝑑𝑡 = 0 in the first line.
Combining Eqs. (6.22) and (6.25), we find that the total EPR is given by

Σ̇( ⃗𝑝) = 𝑑𝑆
𝑑𝑡 +

̇𝑆env = 𝑘B∑
𝑒
𝐽𝑒( ⃗𝑝) ln

𝑅𝑒𝑝𝑠(𝑒)
𝑅−𝑒𝑝𝑡(𝑒)

. (6.26)

Therefore, we define the thermodynamic force ⃗𝐹( ⃗𝑝) ∈ ℱ = ℝ|𝐸| by

𝐹𝑒( ⃗𝑝) ≔ 𝑘B ln
𝑅𝑒𝑝𝑠(𝑒)
𝑅−𝑒𝑝𝑡(𝑒)

(6.27)

and obtain the expression

Σ̇( ⃗𝑝) = ⟨ ⃗𝐽( ⃗𝑝), ⃗𝐹( ⃗𝑝)⟩, (6.28)

which provides the counterpart of Eq. (3.7) in MJPs.

6.3.3 Force-current structure

To bridge the thermodynamic force and the current, we define an |𝐸| × |𝐸| matrix 𝖫( ⃗𝑝) by

𝖫𝑒𝑒′( ⃗𝑝) ≔ 𝑘−1B Λ(𝑅𝑒𝑝𝑠(𝑒), 𝑅−𝑒𝑝𝑡(𝑒))𝛿𝑒𝑒′, (6.29)

where Λ is the logarithmic mean defined for positive numbers 𝑥 and 𝑦 by

Λ(𝑥, 𝑦) ≔
𝑥 − 𝑦
ln(𝑥/𝑦)

. (6.30)
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We call this matrix the Onsager matrix as it satisfies

⃗𝐽( ⃗𝑝) = 𝖫( ⃗𝑝) ⃗𝐹( ⃗𝑝), (6.31)

which is the MJP version of Eq. (3.8) and completes the force-current structure in MJPs. We note that this log

mean form appears in a paper published in 1983 [117]. Recently, it was rediscovered in the context of stochastic

thermodynamics [19, 39, 44].

Let us see several properties of the log mean and the Onsager matrix. First, it is between the geometric

mean and the arithmetic mean:

√𝑥𝑦 ≤ Λ(𝑥, 𝑦) ≤
𝑥 + 𝑦
2 . (6.32)

Therefore, we find that it is always positive as long as 𝑥, 𝑦 > 0 and satisfies

Λ(𝑥, 𝑥) = 𝑥. (6.33)

Thus, 𝖫 is a positive-definite matrix and the equality

𝑘B𝖫𝑒𝑒( ⃗𝑝eq) = 𝑅𝑒𝑝
eq
𝑠(𝑒) = 𝑅−𝑒𝑝

eq
𝑡(𝑒) (6.34)

holds in the equilibrium state, which is defined by ⃗𝐽( ⃗𝑝eq) = 0.
The inequalities in Eq. (6.32) are proved as follows: first, note that for any 𝑓(𝑠) > 0 and 𝑟 > 0, the Cauchy–

Schwarz inequality proves

(∫
𝑟

1
𝑓(𝑠)𝑑𝑠)

2

= (∫
𝑟

1
√

𝑓(𝑠)
𝑠 √𝑠𝑓(𝑠)𝑑𝑠)

2

≤ ∫
𝑟

1

𝑓(𝑠)
𝑠 𝑑𝑠∫

𝑟

1
𝑠𝑓(𝑠)𝑑𝑠. (6.35)

If we choose 𝑓(𝑠) = 1, the inequality reads

(𝑟 − 1)2 ≤ ln 𝑟 𝑟
2 − 1
2 ⇔ 𝑟 − 1

ln 𝑟 ≤ 𝑟 + 1
2 , (6.36)

which, with 𝑟 = 𝑥/𝑦, leads to the second inequality in Eq. (6.32). The first one is also obtained by setting
𝑓(𝑠) = 1/𝑠; then, we get

(ln 𝑟)2 ≤ (1 − 1
𝑟 )(𝑟 − 1) ⇔ 𝑟 ≤ (𝑟 − 1

ln 𝑟 )
2
, (6.37)

which results in

√
𝑥
𝑦 ≤

𝑥/𝑦 − 1
ln(𝑥/𝑦)

. (6.38)

Since 𝑦 > 0, multiplying 𝑦 provides the desired inequality.
The positive-definiteness of the Onsager matrix allows us to trace arguments in preceding sections. For

example, we can define an inner product on ℱ by

⟨ ⃗𝐹′, ⃗𝐹″⟩𝑝 ≔ ⟨ ⃗𝐹′, 𝖫( ⃗𝑝) ⃗𝐹″⟩. (6.39)

It also induces norm ‖ ⃗𝐹′‖𝑝 ≔√⟨ ⃗𝐹′, ⃗𝐹′⟩𝑝 and gives the EPR with the geometric expression

Σ̇( ⃗𝑝) = ‖ ⃗𝐹( ⃗𝑝)‖2𝑝. (6.40)

When the states’graph is an 𝑛-dimensional lattice, 𝑖 corresponds to a point in the 𝑛-dimensional space. Each
jump 𝑒 should be interpreted as a jump from 𝑠(𝑒) to an adjacent site 𝑡(𝑒) in direction 𝑑 = 𝑡(𝑒)− 𝑠(𝑒). We assume

the expansion [6, 39]

𝑅𝑒 =
𝐷𝑑(𝑠(𝑒))
Δ2 +

𝑓𝑑(𝑠(𝑒))
Δ + 𝑂(1) (6.41)
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with the spatial separation between nearest nodes Δ and diffusive and balistic contributions such that 𝐷−𝑑(𝑖) =
𝐷𝑑(𝑖) and 𝑓−𝑑(𝑖) = −𝑓𝑑(𝑖). Then, the thermodynamic force and the current will be expanded by

𝐽𝑒( ⃗𝑝) = (
𝐷𝑑(𝑠(𝑒))
Δ2 +

𝑓𝑑(𝑠(𝑒))
Δ )𝑝𝑠(𝑒) − (

𝐷−𝑑(𝑡(𝑒))
Δ2 +

𝑓−𝑑(𝑡(𝑒))
Δ )𝑝𝑡(𝑒) + 𝑂(1)

=
2𝑓𝑑(𝑠(𝑒))𝑝𝑠(𝑒) − 𝜕𝑑(𝐷𝑑(𝑠(𝑒))𝑝𝑠(𝑒))

Δ + 𝑂(1),

𝐹𝑒( ⃗𝑝) = 𝑘B ln
[𝐷𝑑(𝑠(𝑒)) + Δ𝑓𝑑(𝑠(𝑒))]𝑝𝑠(𝑒)
[𝐷−𝑑(𝑡(𝑒)) + Δ𝑓−𝑑(𝑡(𝑒))]𝑝𝑡(𝑒)

+ 𝑂(Δ2)

= 𝑘B ln (1 +
Δ𝑓𝑑(𝑠(𝑒))𝑝𝑠(𝑒)
𝐷𝑑(𝑠(𝑒))𝑝𝑠(𝑒)

) − ln (1 +
Δ[𝜕𝑑(𝐷𝑑(𝑠(𝑒))𝑝𝑠(𝑒)) − 𝑓𝑑(𝑠(𝑒))𝑝𝑠(𝑒)]

𝐷𝑑(𝑠(𝑒))𝑝𝑠(𝑒)
) + 𝑂(Δ2)

= 𝑘BΔ
2𝑓𝑑(𝑠(𝑒))𝑝𝑠(𝑒) − 𝜕𝑑(𝐷𝑑(𝑠(𝑒))𝑝𝑠(𝑒))

𝐷𝑑(𝑠(𝑒))𝑝𝑠(𝑒)
+ 𝑂(Δ2),

where we used

𝐷−𝑑(𝑡(𝑒))𝑝𝑡(𝑒) = 𝐷𝑑(𝑠(𝑒) + 𝑑)𝑝𝑠(𝑒)+𝑑 = 𝐷𝑑(𝑠(𝑒))𝑝𝑠(𝑒) + Δ𝜕𝑑(𝐷𝑑(𝑠(𝑒))𝑝𝑠(𝑒)) + 𝑂(Δ2),
𝑓−𝑑(𝑡(𝑒))𝑝𝑡(𝑒) = −𝑓𝑑(𝑠(𝑒) + 𝑑)𝑝𝑠(𝑒)+𝑑 = −𝑓𝑑(𝑠(𝑒))𝑝𝑠(𝑒) − Δ𝜕𝑑(𝑓𝑑(𝑠(𝑒))𝑝𝑠(𝑒)) + 𝑂(Δ2)

and 𝜕𝑑 is defined like 𝜕𝑑𝑔(𝑠(𝑒)) ≔ [𝑔(𝑠(𝑒) + 𝑑) − 𝑔(𝑠(𝑒))]/Δ. Consequently, the Onsager matrix becomes

𝖫𝑒𝑒( ⃗𝑝) = 1
Δ2

𝐷𝑒(𝑠(𝑒))
𝑘B

𝑝𝑠(𝑒) + 𝑂(Δ−1), (6.42)

which reproduces the Onsager relation in the Langevin system (2.23).

6.3.4 Conservativeness and detailed balance

Let us confirm that MJPs satisfy assumptions C1 and C2, discussed in Sec. 3.3. First, the thermodynamic force

satisfies assumption C1 because

⃗𝐹( ⃗𝑝) = ⃗𝐹0 − ∇ ⃗𝜑( ⃗𝑝) (6.43)

with

𝐹0,𝑒 = 𝑘B ln
𝑅𝑒
𝑅−𝑒

, ⃗𝜑( ⃗𝑝) = 𝑘B ln ⃗𝑝. (6.44)

The function ⃗𝜑 ∶ ℝ𝑁
>0 ↦ ℝ𝑁 is actually a bijection.

Assumption C2 can also be verified in important cases. When the system is irreducible and there is only a

single conservation law, ⃗𝜆prob, which represents the conservation of probability, Eq. (3.12) reads

∑
𝑖
𝑒𝜓𝑖−𝜇 = 1, (6.45)

which is solved by 𝜇 = ln∑𝑖 𝑒
𝜓𝑖. Amore nontrivial example is when the system is reducible, and we have two

conservation laws as in Eq. (6.10). Then, Eq. (3.12) provides the two equations

∑
𝑖∈𝐴

𝑒𝜓𝑖−𝜇𝐴 = 𝑃𝐴, ∑
𝑖∈𝐵

𝑒𝜓𝑖−𝜇𝐵 = 𝑃𝐵, (6.46)

where note that now the argument in Eq. (3.12) becomes ⃗𝜓 − 𝜇𝐴 ⃗𝜆𝐴 − 𝜇𝐵 ⃗𝜆𝐵. These equations are also easily
solved by 𝜇𝐴 = ln (𝑃−1𝐴 ∑𝑖∈𝐴 𝑒

𝜓𝑖) and 𝜇𝐵 = ln (𝑃−1𝐵 ∑𝑖∈𝐵 𝑒
𝜓𝑖).

Therefore, we obtain the equivalence for an irreducible MJP without any non-trivial conservation law, as a

consequence of the general discussion; the following two statements are equivalent:

(1) There is a potential ⃗𝜓 ∈ ℝ𝑁 such that

𝐹0,𝑒 = 𝑘B ln
𝑅𝑒
𝑅−𝑒

= 𝜓𝑠(𝑒) − 𝜓𝑡(𝑒). (6.47)
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(2) There exists �⃗� ∈ ℝ𝑁
>0 such that ⃗𝐽(�⃗�) = 0 and∑𝑖 𝜋𝑖 = 1.

In detailed balanced systems, condition (1) is satisfied with 𝜓𝑖 = 𝑘B𝛽𝜖𝑖 as in Eq. (6.20).
When there are multiple heat baths and jump 𝑖 → 𝑗 is mediated by 𝜈 and 𝜈′, the local detailed balance (6.20)

is generalized to

ln
𝑅𝜈𝑗𝑖
𝑅𝜈𝑖𝑗

= 𝛽𝜈(𝜖𝑖 − 𝜖𝑗), (6.48)

ln
𝑅𝜈′𝑗𝑖
𝑅𝜈′𝑖𝑗

= 𝛽𝜈′(𝜖𝑖 − 𝜖𝑗). (6.49)

On the other hand, conservativeness (6.47) requires

𝛽𝜈(𝜖𝑖 − 𝜖𝑗) = 𝛽𝜈′(𝜖𝑖 − 𝜖𝑗). (6.50)

Therefore, condition (1) implies that all bath temperathres are the same.

According to the discussion in Sec. 3.3, the detailed-balanced state �⃗� in (2) is obtained as (cf. Eq. (3.16))

�⃗� = ⃗𝜑−1( ⃗𝜓 + 𝜇 ⃗𝜆prob), (6.51)

which is written down as

𝜋𝑖 = 𝑒−(𝜓𝑖+𝜇)/𝑘B, (6.52)

where 𝜇 is determined by ∑𝑖 𝜋𝑖 = 1; i.e., 𝜇 = ln∑𝑖 𝑒
−𝜓𝑖/𝑘B. When the system is connected to a single heat

bath, because 𝜓𝑖/𝑘B = 𝛽𝜖𝑖, we finally find

𝜋𝑖 =
𝑒−𝛽𝜖𝑖
𝑍𝛽

, 𝑍𝛽 = ∑
𝑖
𝑒−𝛽𝜖𝑖 (6.53)

which is nothing but the thermal equilibrium state.

6.3.5 Cycles and breaking of detailed balance

While cycles were introduced abstractly in Sec. 3.4, the kernel of ∇T can charactrize them as actual cycles on

the graph [113]. A cycle 𝐶 on a graph is just a cyclic collection of edges {𝑒𝑚}𝑚=1,…,𝑀; then, the edges connect

the same number of nodes {𝑖𝑚} where (𝑖𝑚, 𝑖𝑚+1) = (𝑠(𝑒𝑚), 𝑡(𝑒𝑚)) or (𝑖𝑚, 𝑖𝑚+1) = (𝑡(𝑒𝑚), 𝑠(𝑒𝑚)) holds for each
𝑚, where the cycle can go through a node more than once, but we assume edges are used at most once. If we
define the corresponding vector ⃗𝐶 ∈ ℝ|𝐸| by

𝐶𝑒 =
⎧

⎨
⎩

1 ∃𝑚, 𝑒 = 𝑒𝑚 & 𝑖𝑚 = 𝑠(𝑒𝑚)
−1 ∃𝑚, 𝑒 = 𝑒𝑚 & 𝑖𝑚 = 𝑡(𝑒𝑚)
0 otherwise

, (6.54)

it satisfies ∇T ⃗𝐶 = 0 because

[∇T ⃗𝐶]𝑖 = ∑
𝑒
(𝛿𝑖𝑡(𝑒) − 𝛿𝑖𝑠(𝑒))𝐶𝑒

= ∑
𝑚|𝑖𝑚=𝑖

[𝛿𝑖𝑚𝑡(𝑒𝑚−1)
⇒𝐶𝑒𝑚−1=1

− 𝛿𝑖𝑚𝑠(𝑒𝑚−1)
⇒𝐶𝑒𝑚−1=−1

]𝐶𝑒𝑚−1 + [ 𝛿𝑖𝑚𝑡(𝑒𝑚)
⇒𝐶𝑒𝑚=−1

− 𝛿𝑖𝑚𝑠(𝑒𝑚)
⇒𝐶𝑒𝑚=1

]𝐶𝑒𝑚

= ∑
𝑚|𝑖𝑚=𝑖

(1 − 1) = 0,

where in the third line, we focus on pairs of jumps (𝑒𝑚−1, 𝑒𝑚) that cross 𝑖𝑚 = 𝑖. For example, if 𝑖𝑚 = 𝑡(𝑒𝑚−1),
𝑒𝑚−1 is aligned with the direction of the cycle, so 𝐶𝑒𝑚−1 becomes one. Therefore, we find

⃗𝐶 ∈ ker∇T.
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We can also show the converse, i.e., ker∇T is spanned by vectors corresponding to cycles on the graph.

To show that, we consider a way to construct an independent set of cycles, focusing on connected graphs (i.e.,

irreducible MJPs). A spanning tree is a connected subset of the graph that includes all the nodes and no cycles;

i.e., every pair of nodes is connected by a unique path. We can easily see that a spanning tree has 𝑁 − 1 edges
(thus, |𝐸|−𝑁+1 edges are eliminated when creating a spanning tree). If we add an edge that exists in the original
graph but not in the spanning tree, the newly connected nodes are connected in two ways, by the unique path in

the spanning tree and the added edge; thus, we can create a single cycle. In this way, we can make |𝐸| − 𝑁 + 1
cycles, which we write {𝐶𝜇}𝜇=1,…,|𝐸|−𝑁+1. The corresponding vectors { ⃗𝐶𝜇} are linearly independent because
𝐶𝜇
𝑒𝜇′ = 𝛿𝜇𝜇′ holds with 𝑒𝜇 being the edge added to make cycle 𝐶𝜇.

We can further show that { ⃗𝐶𝜇} spans the kernel of∇T. When the graph is connected, the rank of∇ becomes

𝑁 − 1. In fact, taking ⃗𝜙 ∈ ℝ𝑁 such that ∇ ⃗𝜙 = 0, we have

∑
𝑖
∇𝑒𝑖𝜙𝑖 = ∇𝑒𝑠(𝑒)𝜙𝑠(𝑒) + ∇𝑒𝑡(𝑒)𝜙𝑡(𝑒) = 0, (6.55)

which is only satisfied when 𝜙𝑖 = const. for any 𝑖. Thus, the dimension of ker∇ is one, and since∇ is an𝑁×|𝐸|
matrix, we see that rank∇ = 𝑁−1 (this reveals the fact that an irreducible MJP has only one conservation law,

corresponding to the probability conservation). On the other hand, the rank-nullity theorem tells

rank∇ + dim ker∇T = |𝐸|. (6.56)

Therefore, we obtain

dim ker∇T = |𝐸| − 𝑁 + 1, (6.57)

which concludes that { ⃗𝐶𝜇} is a basis of ker∇T.

Consequently, we can identify 𝒯 in Sec. 3.4 as the operator

𝒯 ∶ ℝ|𝐸|−𝑁+1 ∋ (𝑞𝜇) ↦ ∑
𝜇
𝑞𝜇 ⃗𝐶𝜇 ∈ ker∇T ⊂ ℝ|𝐸|, (6.58)

with its adjoint

𝒯∗ ∶ ℝ|𝐸| ∋ ⃗𝐾 ↦ (⟨ ⃗𝐶𝜇, ⃗𝐾⟩) ∈ ℝ|𝐸|−𝑁+1. (6.59)

The adjoint operator provides the influence of ⃗𝐾 on each cycle as

⟨ ⃗𝐶𝜇, ⃗𝐾⟩ = ∑
𝑒∈𝐸∣𝑒∈𝐶𝜇

𝐾𝑒 − ∑
𝑒∈𝐸∣−𝑒∈𝐶𝜇

𝐾𝑒. (6.60)

Following the general result, the steady-state dissipation can be expressed by

Σ̇( ⃗𝑝ss) = ∑
𝜇
𝑗𝜇𝑓𝜇 (6.61)

with

⃗𝐽( ⃗𝑝ss) = ∑
𝜇
𝑗𝜇 ⃗𝐶𝜇, 𝑓𝜇 = ⟨ ⃗𝐶𝜇, ⃗𝐹( ⃗𝑝ss)⟩. (6.62)

This decomposition into cycles is first obtained by Schnakenberg in Ref. [57]. It represents that the steady-state

dissipation is incurred by cyclic motions which do not affect the system’s dynamics.

6.4 Housekeeping-excess decomposition

We can obtain the geometric housekeeping-excess decomposition by applying the general framework provided

in Sec. 4.2. Here, we do not review every single result, but explain several selected crucial results in addition to

some remarks specific toMJPs. More detailed analysis on what follows in this chapter can be found in Ref. [19].
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We define the conservative subspace by

𝒞 ≔ im∇ = {−∇ ⃗𝜙 ∣ ⃗𝜙 ∈ ℝ𝑁} (6.63)

and give the housekeeping EPR by

Σ̇hk( ⃗𝑝) = min
�⃗�′∈𝒞

‖ ⃗𝐹( ⃗𝑝) − ⃗𝐹′‖2𝑝. (6.64)

The conservative subspace is actually a space of “equilibrium” forces as discussed in Sec. 6.3.4. The potential

⃗𝜙∗( ⃗𝑝) that provides the projected conservative force, ⃗𝐹c( ⃗𝑝) = −∇ ⃗𝜙∗( ⃗𝑝), solves the equation (cf. Eq. (4.56))

∇T𝖫( ⃗𝑝)∇ ⃗𝜙 = −
𝑑 ⃗𝑝
𝑑𝑡 . (6.65)

By using a pseudo inverse of ∇T𝖫( ⃗𝑝)∇, we can explicitly describe the potential as

⃗𝜙∗( ⃗𝑝) = −(∇T𝖫( ⃗𝑝)∇)+
𝑑 ⃗𝑝
𝑑𝑡 , (6.66)

where + denotes the Moore–Penrose inverse.

Matrix∇T∇ is called the Laplacian matrix [113] and∇T𝖫( ⃗𝑝)∇ is the weighted one. Since 𝖫( ⃗𝑝) is full-rank,
∇T𝖫( ⃗𝑝)∇ has rank 𝑁 − 1. Its elements are given by

[∇T𝖫( ⃗𝑝)∇]𝑖𝑗 = {
∑𝑒∣𝑖=𝑠(𝑒) or 𝑡(𝑒) 𝖫𝑒𝑒( ⃗𝑝) if 𝑖 = 𝑗
−∑𝑒∣(𝑖,𝑗)=(𝑠(𝑒),𝑡(𝑒)) or (𝑡(𝑒),𝑠(𝑒)) 𝖫𝑒𝑒( ⃗𝑝) if 𝑖 ≠ 𝑗

. (6.67)

It is the discrete version of the operator

𝜇𝑇𝛁 ⋅ 𝑃(𝑿)𝛁, (6.68)

which appears in Langevin systems.

The excess EPR is also given by (cf. Eq. (4.37))

Σ̇ex( ⃗𝑝) = min
�⃗�′

‖ ⃗𝐹′‖2𝑝 s.t. ∇T𝖫( ⃗𝑝) ⃗𝐹′ = ∇T ⃗𝐽( ⃗𝑝). (6.69)

We also have the alternative expression (cf. Eq. (4.38))

Σ̇ex( ⃗𝑝) = min
�⃗�′
⟨ ⃗𝐽′, 𝖫( ⃗𝑝)−1 ⃗𝐽′⟩ s.t. ∇T ⃗𝐽′ = ∇T ⃗𝐽( ⃗𝑝), (6.70)

which suggests that the excess EPR is the minimum EPR with the Onsager matrix 𝖫( ⃗𝑝) fixed.
The nonconservative force ⃗𝐹nc( ⃗𝑝) and the corresponding current ⃗𝐽nc( ⃗𝑝) = 𝖫( ⃗𝑝) ⃗𝐹nc( ⃗𝑝) give the non-stationary

extension of the Schnakenberg formula (6.61) since ⃗𝐽nc( ⃗𝑝) ∈ ker∇T. We have

Σ̇hk( ⃗𝑝) = ∑
𝜇
𝑗†𝜇𝑓†𝜇 (6.71)

with

⃗𝐽nc( ⃗𝑝) = ∑
𝜇
𝑗†𝜇 ⃗𝐶𝜇, 𝑓†𝜇 = ⟨ ⃗𝐶𝜇, ⃗𝐹nc( ⃗𝑝)⟩. (6.72)

6.5 Thermodynamic trade-off

6.5.1 Thermodynamic uncertainty relation

The TUR in Eq. (5.29) reads

Σ̇ex( ⃗𝑝) ≥
|𝑑𝑡⟨𝒪⟩|2

Δ𝒪( ⃗𝑝)
, (6.73)
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where

𝑑𝑡⟨𝒪⟩ =
𝑑
𝑑𝑡 ∑𝑖

𝒪𝑖𝑝𝑖 = ⟨ ⃗𝐽( ⃗𝑝), ∇T�⃗�⟩ (6.74)

is the changing rate of the expectation value of random variable 𝒪 (�⃗� = (𝒪𝑖) ∈ ℝ𝑁) and

Δ𝒪( ⃗𝑝) = ‖�⃗�‖2𝑝. (6.75)

Because of the inequality (6.32),

‖�⃗�‖2𝑝 = ∑
𝑒
𝐿𝑒𝑒( ⃗𝑝)[∇T�⃗�]2𝑒 ≤

1
2𝑘B

∑
𝑒
(𝑅𝑒𝑝𝑠(𝑒) + 𝑅−𝑒𝑝𝑡(𝑒))[∇T�⃗�]2𝑒. (6.76)

This quantity can further be rewritten as

∑
𝑒
(𝑅𝑒𝑝𝑠(𝑒) + 𝑅−𝑒𝑝𝑡(𝑒))[∇T�⃗�]2𝑒 = lim

𝑑𝑡→0

Var(𝑑𝒪)
𝑑𝑡 . (6.77)

This is proved as follows: first, in infinitesimal interval 𝑑𝑡, jump 𝑒 occurs at probability 𝑅𝑒𝑝𝑠(𝑒)𝑑𝑡. Thus, the
change in 𝒪, 𝑑𝒪, has moments

⟨𝑑𝒪𝑘⟩ = 𝑑𝑡( ∑
𝑒∈𝐸

(𝒪𝑡(𝑒) − 𝒪𝑠(𝑒))𝑘𝑅𝑒𝑝𝑠(𝑒) + ∑
−𝑒∈𝐸

(𝒪𝑡(𝑒) − 𝒪𝑠(𝑒))𝑘𝑅𝑒𝑝𝑠(𝑒))

= 𝑑𝑡( ∑
𝑒∈𝐸

[∇T�⃗�]𝑘𝑒𝑅𝑒𝑝𝑠(𝑒) + ∑
−𝑒∈𝐸

[−∇T�⃗�]𝑘−𝑒𝑅𝑒𝑝𝑠(𝑒)).

Therefore, the variance is given by

Var(𝑑𝒪) = ⟨𝑑𝒪2⟩ − ⟨𝑑𝒪⟩2

= 𝑑𝑡( ∑
𝑒∈𝐸

[∇T�⃗�]2𝑒𝑅𝑒𝑝𝑠(𝑒) + ∑
−𝑒∈𝐸

[−∇T�⃗�]2−𝑒𝑅𝑒𝑝𝑠(𝑒)) + 𝑜(𝑑𝑡)

= 𝑑𝑡 ∑
𝑒∈𝐸

[∇T�⃗�]2𝑒(𝑅𝑒𝑝𝑠(𝑒) + 𝑅−𝑒𝑝𝑡(𝑒)) + 𝑜(𝑑𝑡),

which completes the proof. We define

𝒟𝒪( ⃗𝑝) ≔ 1
2 ∑𝑒

(𝑅𝑒𝑝𝑠(𝑒) + 𝑅−𝑒𝑝𝑡(𝑒))[∇T�⃗�]2𝑒, (6.78)

which can be understood as the short-time variance of observable 𝒪 and the discrete extention of the diffusivity

in Langevin systems (Eq. (5.10)). As a result, we obtain the TUR

Σ̇ex( ⃗𝑝) ≥ 𝑘B
|𝑑𝑡⟨𝒪⟩|2

𝒟𝒪( ⃗𝑝)
. (6.79)

6.5.2 Thermodynamic speed limit

The general description regarding the generalizedWasserstein distance (Eq. (5.36)) suits bestMJPs and chemical

reaction networks, discussed in the next chapter. It was Maas who proposed to define the Wasserstein distance

in MJPs [109] by

𝒲( ⃗𝑝𝑎, ⃗𝑝𝑏) = inf
�⃗�,�⃗�√

𝜏∫
𝜏

0
‖∇ ⃗𝜓(𝑡)‖2𝑝(𝑡)𝑑𝑡 (6.80)

with conditions

⃗𝑝(0) = ⃗𝑝𝑎, ⃗𝑝(𝜏) = ⃗𝑝𝑏,
𝑑 ⃗𝑝
𝑑𝑡 = ∇T𝖫( ⃗𝑝(𝑡))∇ ⃗𝜓(𝑡). (6.81)
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Figure 6.1: (Adapted from Ref. [19]) Schematics of the two-level system. Total EPR Σ̇ is divided into excess

EPR Σ̇ex and housekeeping EPR Σ̇hk. We can interpret Σ̇ex as stemming from a relaxation caused by a fictitious

single reservoir at the “mean” temperature ̄𝛽, while Σ̇hk is attributed to heat transfer that does not change the
state.

As proved in Ref. [109], it works as a distance between probability distributions (see also Ref. [19]). However,

since the definition includes the kinetic information in 𝖫( ⃗𝑝(𝑡)), its interpretation tends to be formal. Nonetheless,
the correspondence to the original version of the Benamou–Brenier formula (5.19) is clear by the relation (6.42).

For more details, see Appendix A.

As deduced in the general framework, theWasserstein distance provides a lower bound on the excess EP by

Σex = ∫
𝜏

0
Σ̇ex( ⃗𝑝(𝑡))𝑑𝑡 ≥

𝒲( ⃗𝑝(0), ⃗𝑝(𝜏))2

𝜏 , (6.82)

which can be rearranged to result in the TSL

𝜏Σex ≥ 𝒲( ⃗𝑝(0), ⃗𝑝(𝜏))2. (6.83)

6.6 Example

Here, we illustrate the decomposition and the TUR in a simple two-level stochastic system. Consider a two-

level system coupled to two heat baths at inverse temperature 𝛽h and 𝛽c (𝛽h < 𝛽c). For this system, we can
analytically obtain the excess and housekeeping EPRs. Let the energy of state 𝑖 be 𝜖𝑖 for 𝑖 = 1, 2 and 𝜖2 > 𝜖1.
There are two kinds of transition associated with the distinct reservoirs, labeled by 𝑒 = h and c (which are
abbreviated forms of (2, 1; h) and (2, 1; c)). Transition 𝑒 is mediated by the bath at 𝛽𝑒. The system is depicted

in Fig. 6.1.

The incidence matrix is then given by

𝐵 = ( 1 1
−1 −1) . (6.84)

The matrix ∇T𝖫( ⃗𝑝)∇ reads

∇T𝖫( ⃗𝑝)∇ = (ℓh + ℓc) (
1 −1
−1 1 ) (6.85)

and its Moore–Penrose inverse

(∇T𝖫( ⃗𝑝)∇)+ = 1
4(ℓh + ℓc)

( 1 −1
−1 1 ) , (6.86)

where

ℓc = Λ(𝑅c𝑝2, 𝑅−c𝑝1). (6.87)
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Thus, according to Eq. (6.66), a potential that gives the conservative force is obtained as

𝜙∗( ⃗𝑝) = −(∇T𝖫( ⃗𝑝)∇)+∇T𝖫( ⃗𝑝) ⃗𝐹( ⃗𝑝)

= − 1
4(ℓh + ℓc)

( 1 −1
−1 1 ) (

1 1
−1 −1) (

ℓh 0
0 ℓc

) (𝐹h𝐹c
)

=
ℓh𝐹h + ℓc𝐹c
ℓh + ℓc

(−1/21/2 ) . (6.88)

Since 𝐹h and 𝐹c are given as

𝐹h = 𝑘B𝛽h(𝜖2 − 𝜖1) + 𝑘B(ln𝑝2 − ln𝑝1), (6.89)

𝐹c = 𝑘B𝛽c(𝜖2 − 𝜖1) + 𝑘B(ln𝑝2 − ln𝑝1), (6.90)

the conservative force reads

⃗𝐹c( ⃗𝑝) = −∇𝜙∗( ⃗𝑝) =
ℓh𝐹h + ℓc𝐹c
ℓh + ℓc

(11)

= (𝑘B ̄𝛽(𝜖2 − 𝜖1) + 𝑘B(ln𝑝2 − ln𝑝1)) (
1
1) , (6.91)

where we defined

̄𝛽 ≔
ℓh𝛽h + ℓc𝛽c
ℓh + ℓc

. (6.92)

This expression means the conservative force can be attributed to a relaxation mode mediated by a fictitious

heat bath at temperature ̄𝛽 (see Fig. 6.1).
On the other hand, the nonconservative current is obtained by

⃗𝐽nc( ⃗𝑝) = 𝖫( ⃗𝑝)( ⃗𝐹( ⃗𝑝) − ⃗𝐹c( ⃗𝑝)) =
ℓhℓc
ℓh + ℓc

(𝜖2 − 𝜖1)(𝛽c − 𝛽h) (
1
−1) . (6.93)

The fact that [𝐽nc]h = −[𝐽nc]c indicates that the nonconservative current does not affect the dynamics, just
representing cyclic motion, as depicted in Fig. 6.1. Moreover, the housekeeping EPR now becomes

Σ̇hk( ⃗𝑝) =
𝑘Bℓhℓc
ℓh + ℓc

(𝜖2 − 𝜖1)2(𝛽c − 𝛽h)2, (6.94)

which shows that the housekeeping dissipation occurs due to the temperature difference between the two heat

baths 𝛽c − 𝛽h.
We also numerically validate the TUR (6.79). The simulation is done with parameters 𝛽h = 1, 𝛽c = 2, 𝜖2 −

𝜖1 = 1, and 𝑅−h = 𝑅−c = 1, and initial condition 𝑝0(0)/𝑝1(0) = 103. 𝑅h and 𝑅c are determined by the local
detailed balance. The result is presented in Fig. 6.2. We plot the ratios

𝜂 =
𝑘B|𝑑𝑡⟨𝒪⟩|2

Σ̇( ⃗𝑝)𝒟𝒪( ⃗𝑝)
, 𝜂ex =

𝑘B|𝑑𝑡⟨𝒪⟩|2

Σ̇ex( ⃗𝑝)𝒟𝒪( ⃗𝑝)
, (6.95)

which satisfy 𝜂 ≤ 𝜂ex. We can also confirm the TUR 𝜂ex ≤ 1 from the figure. As long as 𝒪 is not a null vector

of ∇, these ratios are independent of the choice of 𝒪. This is because the state space is now two dimensional

and ∇ has a one-dimensional kernel.

In the inset of Fig. 6.2, we compare the geometric housekeeping-excess decomposition with the Hatano–

Sasa decomposition by using the definition given in Eqs. (4.30) and (4.31). They behave quite similarly in this

case.



6.6. EXAMPLE 53

0.0 0.5 1.0 1.5 2.0
Time

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

Time

101

100

10-1

10-2

10-3

10-4

10-5

Figure 6.2: (Adapted from Ref. [19]) Verification of the short-time TUR (6.79). The ratios 𝜂 and 𝜂ex between
the lower bound 𝑘B|𝑑𝑡⟨𝒪⟩|2/𝒟𝒪( ⃗𝑝) vs. EPR Σ̇ and excess EPR Σ̇ex are shown. As the system approaches the

steady state, 𝜂ex becomes close to one, while 𝜂 vanishes, which is because the total EPR remains finite even

in the steady state. In the inset, we compare our decomposition with the HS decomposition. In this example,

where a stable steady state exists, they behave in almost the same way.





Chapter 7

Chemical reaction networks

The formal structure of chemical reaction networks is similar to that of Markov jump processes. The force-

current structure finally obtainedwill completely includewhat was discussed in the preceding chapter. However,

the physical objects they describe are completely different. One of the main purposes of this chapter is to

understand the similarity and difference between chemical systems and Markov jump processes.

7.1 Dynamics

7.1.1 Setup

A chemical reaction network (CRN) is an assemble of chemical species and reactions between them [3, 118].

Chemical species, like the oxigen molecule or an enzyme, are labeled by 𝛼 ∈ 𝐴 = {1,… ,𝑁}. We assume the

system is in a well-stirred reaction vessel with a fixed temperature 𝑇 and pressure. The abundance is measured
by the concentrations ⃗𝑐 = (𝑐𝛼) ∈ ℝ𝑁

>0. Thus, the state space 𝒮0 and the restricted space 𝒮 are given by ℝ𝑁 and

ℝ𝑁
>0.

A reaction, labeled by 𝑒 ∈ 𝐸 = {1,… , |𝐸|} is designated by how many molecules are involved in it. We

write the number of species 𝛼 that join reaction 𝑒 as 𝜈𝛼𝑒 ∈ ℤ≥0, and those produced as 𝜈′𝛼𝑒 ∈ ℤ≥0. For example,
in reaction

𝑋1 + 𝑋2
𝑒

⟶2𝑋3, (7.1)

we have

𝜈1𝑒 = 𝜈2𝑒 = 1, 𝜈3𝑒 = 0, (7.2)

𝜈′1𝑒 = 𝜈′2𝑒 = 0, 𝜈′3𝑒 = 2. (7.3)

We assume every reaction is reversible; i.e., there are |𝐸| pairs of reversible reactions and 2|𝐸| individual re-
actions. Let −𝑒 denote the backward reaction of 𝑒; e.g., for the above reaction, backward reaction is given
by

2𝑋3
−𝑒
⟶𝑋1 + 𝑋2, (7.4)

and the pair is denoted as

𝑋1 + 𝑋2
𝑒
⇌ 2𝑋3 (7.5)

and labeled by 𝑒. We further define an 𝑁 × |𝐸| matrix 𝖲, called the stoichiometric matrix, by

𝖲𝛼𝑒 ≔ 𝜈′𝛼𝑒 − 𝜈𝛼𝑒, (7.6)

which indicates the net increase of 𝛼 in reaction 𝑒.

55



56 CHAPTER 7. CHEMICAL REACTION NETWORKS

7.1.2 Continuity equation

We write the occurrence rate of reaction 𝑒 (reaction rate) by 𝐽𝑒( ⃗𝑐 ), where ⃗𝑐 indicates the concentration depen-
dence of the reaction rate. Because each reaction has a forward and a backward reaction, the reaction rate can

be split into positive contributions from them as

𝐽𝑒( ⃗𝑐 ) = 𝐽+𝑒 ( ⃗𝑐 ) − 𝐽−𝑒 ( ⃗𝑐 ), (7.7)

where 𝐽±𝑒 ( ⃗𝑐 ) > 0 is the occurrence rate of the forward/backward reaction. We can regard each reaction as an

elementary step; so we have ℱ = ℝ|𝐸| [3]. The reaction rates are given as a vector, ⃗𝐽( ⃗𝑐 ) = (𝐽𝑒( ⃗𝑐 )) ∈ ℱ.
A typical form of reaction rates is the mass action kinetics:

𝐽+𝑒 ( ⃗𝑐 ) = 𝑘+𝑒 ∏
𝛼
𝑐𝜈𝛼𝑒𝛼 , 𝐽−𝑒 ( ⃗𝑐 ) = 𝑘−𝑒 ∏

𝛼
𝑐𝜈

′
𝛼𝑒
𝛼 , (7.8)

where 𝑘±𝑒 are constants called the rate constants. It was found by Waage and Guldberg in 1867 [119] and

is widely believe to hold in ideal (dilute) systems. However, it can be violated in non-ideal (thick or ionic)

solutions [120]; so we do not necessarily assume this form unless otherwise stated.

Combining the stoichiometric matrix and the reaction rates, the time evolution of the concentrations is given

by

𝑑𝑐𝛼
𝑑𝑡 = ∑

𝑒
𝖲𝛼𝑒𝐽𝑒( ⃗𝑐 ), (7.9)

or equivalently,

𝑑 ⃗𝑐
𝑑𝑡 = 𝖲 ⃗𝐽( ⃗𝑐 ). (7.10)

Therefore, it is natural to introduce the gradient operator ∇ ∶ 𝒮→ ℱ by

∇ ≔ 𝖲T. (7.11)

Then, Eq. (7.10) reads

𝑑 ⃗𝑐
𝑑𝑡 = ∇T ⃗𝐽( ⃗𝑐 ), (7.12)

which is the CRN counterpart of Eq. (3.3). We may call the continuity equation the rate equation. Concentration

⃗𝑐 ss is called a steady-state distribution or a steady state if it satisfies∇ ⃗𝐽( ⃗𝑐 ss) = 0. Detailed balance is defined by
⃗𝐽( ⃗𝑐 ) = 0, which is stronger than the steady-state condition. Up to here, we are intentionally ignoring external

effects on the dynamics, such as exchange of molecules. As discussed in the next section, we consider closed

and open systems whose dynamics are described by Eq. (7.10).

The gradient operator defines conservation laws. For example, if the system is substantially closed (i.e., it

does not exchange any molecules with outer systems), the total mass is conserved. It is expressed by the vector

�⃗� ∈ ℝ𝑁
>0 that represents the mass of the chemical species; then, we expect the mass conservation

∇�⃗� = 0, (7.13)

so that 𝑑𝑡⟨�⃗�, ⃗𝑐⟩ = 0. CRNs can have other non-trivial conservation laws related to characteristic segments

in molecules that are preserved in reactions, called moiety [27]. On the other hand, open CRNs can break

conservation laws of closed CRNs [121, 122].

The region that ⃗𝑐 can reach is restricted due to the conservation laws. We define the stoichiometic manifold

by [118]

ℳ( ⃗𝑐0) ≔ { ⃗𝑐 ∈ 𝒮 ∣ ⃗𝑐 − ⃗𝑐0 ∈ im∇T}. (7.14)

Given an appropriate set of conservation laws {𝜆(𝑖)}, that is, a basis of ker∇, it can be written as

ℳ( ⃗𝑐0) = { ⃗𝑐 ∈ 𝒮 ∣ ⟨𝜆(𝑖), ⃗𝑐⟩ = ⟨𝜆(𝑖), ⃗𝑐0⟩, ∀𝑖}. (7.15)

Every time course starting from ⃗𝑐0 is trapped in the stoichiometric manifold.
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7.1.3 Closed systems, open systems

Equation (7.12) can be invalid when there are external flux of chemical species from chemostats, i.e., when the

system is open. Let the set of exchangeable species be 𝐴ext and distinguish it from internal chemical species

𝐴, which cannot go out of the vessel. Now, we have |𝐴| + |𝐴ext| kinds of chemical species. If the chemostatted
species 𝐴ext are externally injected at rate 𝐼𝛼, their rate equations should read

𝑑𝑐𝛼
𝑑𝑡 = ∑

𝑒
∇𝑒𝛼𝐽𝑒({𝑐𝛽}𝛽∈𝐴, {𝑐𝛾}𝛾∈𝐴ext) + 𝐼𝛼 (𝛼 ∈ 𝐴ext). (7.16)

For convenience, we assume that the concentrations of exchangeable species are always maintained by external

control [27], i.e., we assume

𝑐𝛼 = const. (𝛼 ∈ 𝐴ext). (7.17)

We refer to these controled species as chemostatted species. Consequently, the chemostatted species are ef-

fectively eliminated from the dynamical description and we can concentrate on the rate equation (7.12) for the

internal species. The vector ⃗𝑐 is understood as representing the internal species concentrations (𝑐𝛼)𝛼∈𝐴.
Nonetheless, the information of chemostatted species is still embedded in the reaction rates ⃗𝐽( ⃗𝑐 ). For ex-

ample, in the mass action kinetics, the reaction rates are given like

𝐽+𝑒 ( ⃗𝑐 ) = 𝑘+𝑒 ∏
𝛼∈𝐴

𝑐𝜈𝛼𝑒𝛼 with 𝑘+𝑒 = 𝜅+𝑒 ∏
𝛼∈𝐴ext

𝑐𝜈𝛼𝑒𝛼 , (7.18)

where 𝜅+𝑒 should be understood as the genuine rate constant and 𝑘+𝑒 is the apparent (effective) rate constant

given by the genuine one and the constant concentrations {𝑐𝛼}𝛼∈𝐴ext.

As we effectively forget chemostatted species, we may have reactions such as

∅
𝑒
⇌ 𝑋𝛼, (7.19)

where∅ represents vacancy where there were some chemical species if we did not ignore chemostatted species.

Apparently, this reaction breaks the conservation of mass, which often occurs in open CRNs described in this

way. Then, the reaction rate turns into

𝐽𝑒( ⃗𝑐 ) = 𝑘+𝑒 − 𝐽−𝑒 (𝑐𝛼) (7.20)

with a constant 𝑘+𝑒 .
In open systems, Eq. (7.12) may not have a unique stable steady-state solution. Due to the nonlinearlity

of the reaction rates, it may have multiple steady states [65], or exhibit more non-trivial behavior such as limit

cycles [68] or chaos [67, 123]. A limit cycle is a stable cyclic motion that does not stop [66]. Physically, the

continuous motion is realized by constant supply of chemostatted molecules from the chemostats.

Finally, be aware of the difference between the stoichiometric matrix and the gradient operator. The gradient

operator matters only in the effective dynamics of the internal species. Thus, ∇𝑒𝛼 is only defined for 𝛼 ∈ 𝐴.
On the other hand, as a matter of fact, chemostatted species also commit reactions, hence, we can define their

stoichiometry and 𝖲𝛼𝑒 can be defined for 𝛼 ∈ 𝐴ext. Therefore, the stoichiometric matrix is separated as

𝖲 = (∇
T

𝖲ext)
} 𝛼 ∈ 𝐴
} 𝛼 ∈ 𝐴ext

, (7.21)

where 𝖲ext𝛼𝑒 = 𝖲𝛼𝑒 for 𝛼 ∈ 𝐴ext.

7.1.4 Graph theory and complex balance

A CRN cannot be regarded as a graph with nodes 𝐴 and edges 𝐸 because 𝑒 ∈ 𝐸 can bridge more than one

species. Instead, we define complexes as objects that include chemical species and are connected by edges: a

complex is designated by ⃗𝜉 ∈ ℤ𝑁≥0 that satisfies

∃𝑒 ∈ 𝐸, ∀𝛼 ∈ 𝐴, 𝜉𝛼 = 𝜈𝛼𝑒. (7.22)
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That is, a complex is the reactant or the product of a reaction. Let 𝑃 = {1,… , |𝑃|} be the labels of complexes.
A CRN can be seen as a graph with nodes 𝑃 and edges 𝐸.

Let us consider the following CRN, called the Brusselator model [68, 124]:

∅
1
⇌ 𝑋1, 𝑋1

2
⇌ 𝑋2 2𝑋1 + 𝑋2

3
⇌ 3𝑋1. (7.23)

It has two chemical species 𝐴 = {𝑋1, 𝑋2} and three reactions. In addition, there are five complexes

∅, 𝑋1, 𝑋2, 2𝑋1 + 𝑋2, 3𝑋1, (7.24)

which are represented by the vectors

(00) , (10) , (01) , (21) , (30) . (7.25)

Aligning them, we get the matrix

𝗇 = (0 1 0 2 3
0 0 1 1 0) , (7.26)

which is sometimes refered to as the composition matrix [27, 125, 126]. On the other hand, as the reactions

bridge the complexes to constitute a graph, the corresponding incidence matrix is given by

𝐵 =

⎛
⎜
⎜
⎜
⎝

−1 0 0
1 −1 0
0 1 0
0 0 −1
0 0 1

⎞
⎟
⎟
⎟
⎠

. (7.27)

Multiplying these matrices, we obtain the stoichiometic matrix

𝗇𝐵 = 𝖲 = (1 −1 1
0 1 −1) . (7.28)

The relation 𝖲 = 𝗇𝐵 holds generally by definition. As a result, we can consider an intermediate steady-state
condition, characteristic to CRNs: we define ⃗𝑐 cb to be complex balanced if it satisfies

𝐵 ⃗𝐽( ⃗𝑐 cb) = 0, (7.29)

which is weaker than detailed balance but stronger than the steady-state condition. It is known that, given

the mass action kinetics, a CRN equipped with a complex-balanced steady state is globally stable [118, 127];

therefore, condition (7.29) is so strong that it eliminates the non-trivial behaviors due to nonlinearity, although

complex balanced CRNs hold various theoretically nice properties [125, 126, 128, 129]. On the other hand,

the steady-state condition ∇T ⃗𝐽( ⃗𝑐 ) = 0 does not mean stable steady states and allows limit cycles and chaotic
behavior.

7.2 Thermodynamics

7.2.1 Local detailed balance

The thermodynamic force, also known as the chemical affinity [2, 3], is defined by

𝐹𝑒( ⃗𝑐 ) = −1𝑇 ∑
𝛼∈𝐴∪𝐴ext

𝖲𝛼𝑒𝜇𝛼( ⃗𝑐; ⃗𝑐ext), (7.30)

where 𝜇𝛼 is the chemical potential of 𝛼 and ⃗𝑐ext = (𝑐𝛼)𝛼∈𝐴ext. It means that the thermynamic force is the

chemical potential difference between the reactants and the products. Thermodynamics, especially the second

law, is installed by the assumption that the thermodynamic forces ⃗𝐹( ⃗𝑐 ) ∈ ℝ|𝐸| are given by

𝐹𝑒( ⃗𝑐 ) = 𝑅 ln
𝐽+𝑒 ( ⃗𝑐 )
𝐽−𝑒 ( ⃗𝑐 )

, (7.31)



7.2. THERMODYNAMICS 59

which we call the local detailed balance in CRNs. Here, 𝑅 is the gas constant, defined by the Boltzmann constant
times the Avogadro number. We explain where this relation comes from and why it can be regarded as the local

detailed balance in the next section by considering the so-called ideal solutions.

Equation (7.31) yields the EPR of the form

Σ̇( ⃗𝑐 ) = ⟨ ⃗𝐽( ⃗𝑐 ), ⃗𝐹( ⃗𝑐 )⟩ = 𝑅∑
𝑒
(𝐽+𝑒 ( ⃗𝑐 ) − 𝐽−𝑒 ( ⃗𝑐 )) ln

𝐽+𝑒 ( ⃗𝑐 )
𝐽−𝑒 ( ⃗𝑐 )

. (7.32)

Once we admit the assumption in Eq. (7.31), the non-negativity of EPR Σ̇( ⃗𝑐 ) ≥ 0 is obvious since 𝐽+𝑒 ( ⃗𝑐 )−𝐽−𝑒 ( ⃗𝑐 )
and ln (𝐽+𝑒 ( ⃗𝑐 )/𝐽−𝑒 ( ⃗𝑐 )) have the same sign. We define an equilibrium state ⃗𝑐eq by Σ̇( ⃗𝑐eq) = 0; then, ⃗𝑐 is an
equilibrium state if and only if detailed balance ⃗𝐽+( ⃗𝑐 ) = ⃗𝐽−( ⃗𝑐 ) holds.

At this point, the second property of the force-current structure (Eq. (3.7)) is provided as an assumption in

CRNs; however, this assumption is “proved” from a more physical postulate in ideal systems, as descibed in

the next section.

7.2.2 Ideal dilute solution

Equation (7.31) can be proved by a more specific assumption between constants in ideal dilute solutions. A

solution is defined to be dilute if the chemical potentials of the solutes are given by

𝜇𝛼( ⃗𝑐; ⃗𝑐ext) = 𝜇∘𝛼 + 𝑅𝑇 ln 𝑐𝛼 (𝛼 ∈ 𝐴 ∪ 𝐴ext). (7.33)

In dilute solutions, the partial pressures of the solutes (resp. solvent) obey the Henry (resp. Raoult) law, i.e.,

become proportional to the concenrations. Since the chemical potential of ideal gas has the form 𝜇 = 𝜇∗ +
𝑅𝑇 ln𝑝 with a constant 𝜇∗ and the partial pressure 𝑝, the vapor-liquid equilibrium concludes Eq. (7.33). The

Gibbs free energy is then given by

𝐺( ⃗𝑐; ⃗𝑐ext) = ∑
𝛼∈𝐴∪𝐴ext

𝑐𝛼(𝜇∘𝛼 − 𝑅𝑇 ln 𝑐𝛼) + 𝑅𝑇 ∑
𝛼∈𝐴∪𝐴ext

𝑐𝛼, (7.34)

where the last term reflects the abundance of the solvent [27].

The constant 𝜇∘ is called the standard chemical potential and composed of the standard enthalpy of produc-
tion ℎ∘𝛼 and the standard entropy 𝑠∘𝛼 as 𝜇∘𝛼 = ℎ∘𝛼 − 𝑇𝑠∘𝛼 [120]. Then, we can regard ℎ∘𝛼 and 𝑠∘𝛼 + 𝑅 ln 𝑐𝛼 as the
enthalpy and entropy of a unit amount of chemical species 𝛼. The Gibbs free energy is split into the enthalpy 𝐻
and entropy 𝑆 as

𝐺 = 𝐻 − 𝑇𝑆 with

𝐻( ⃗𝑐; ⃗𝑐ext) = ∑
𝛼∈𝐴∪𝐴ext

ℎ∘𝛼𝑐𝛼, 𝑆( ⃗𝑐; ⃗𝑐ext) = ∑
𝛼∈𝐴∪𝐴ext

𝑐𝛼(𝑠∘𝛼 + 𝑅 ln 𝑐𝛼 − 𝑅). (7.35)

The time derivative of the system entropy becomes

𝑑𝑆
𝑑𝑡 = ∑

𝛼∈𝐴

𝑑𝑐𝛼
𝑑𝑡 (𝑠

∘
𝛼 + 𝑅 ln 𝑐𝛼). (7.36)

The entropy flux to the environment has two contributions: heat exchange and entropy transport. The heat

produced in reaction 𝑒 is given by

𝑄𝑒 = ∑
𝛼∈𝐴∪𝐴ext

𝜈𝛼𝑒ℎ∘𝛼 − ∑
𝛼∈𝐴∪𝐴ext

𝜈′𝛼𝑒ℎ∘𝛼. (7.37)

Thus, the entropy flux is obtained as

̇𝑆env = ∑
𝑒
𝐽𝑒( ⃗𝑐 )𝑄𝑒 − ∑

𝛼∈𝐴ext

(𝑠∘𝛼 + 𝑅 ln 𝑐𝛼)𝐼𝛼 = −1𝑇 ∑𝑒
𝐽𝑒( ⃗𝑐 )𝖲𝛼𝑒ℎ∘𝛼 − ∑

𝛼∈𝐴ext

(𝑠∘𝛼 + 𝑅 ln 𝑐𝛼)𝐼𝛼, (7.38)

where the second term expresses the entropy delivered to the chemostat. Combining Eqs. (7.36) and (7.38), we

obtain

Σ̇( ⃗𝑐 ) = 𝑑𝑆
𝑑𝑡 +

̇𝑆env = −1𝑇 ∑𝑒
𝐽𝑒( ⃗𝑐 ) ∑

𝛼∈𝐴∪𝐴ext

𝖲𝛼𝑒𝜇𝛼( ⃗𝑐; ⃗𝑐ext). (7.39)
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This is why the thermodynamic force was defined as in Eq. (7.30). The notion of affinity was found by De

Donder in 1920’s [2, 130]. For simplicity, we make the dependence of Σ̇, ⃗𝐽, and ⃗𝐹 on ⃗𝑐ext implicit.
The positivity of Eq. (7.39) is proved if we assume the mass action kinetics and the following relationship

between constants:

𝑅𝑇 ln
𝜅+𝑒
𝜅−𝑒

= − ∑
𝛼∈𝐴∪𝐴ext

𝖲𝛼𝑒𝜇∘𝛼, (7.40)

where 𝜅±𝑒 are the “genuine” rate constants, introduced in Sec. 7.1.3. Equation (7.40) is also referred to as the

local detailed balance as it resembles the local detailed balance in MJPs (6.20) [27]. With that relation, we can

rewrite the thermodynamic force defined in Eq. (7.30) as

𝐹𝑒( ⃗𝑐 ) = −1𝑇 ∑
𝛼∈𝐴∪𝐴ext

𝖲𝛼𝑒𝜇∘𝛼 + 𝑅 ln
∏𝛼∈𝐴∪𝐴ext

𝑐𝜈𝛼𝑒𝛼

∏𝛼∈𝐴∪𝐴ext
𝑐𝜈

′
𝛼𝑒
𝛼

(7.41)

= 𝑅 ln
𝜅+𝑒
𝜅−𝑒

+ 𝑅 ln
∏𝛼∈𝐴∪𝐴ext

𝑐𝜈𝛼𝑒𝛼

∏𝛼∈𝐴∪𝐴ext
𝑐𝜈

′
𝛼𝑒
𝛼

= 𝑅 ln
𝐽+𝑒 ( ⃗𝑐 )
𝐽−𝑒 ( ⃗𝑐 )

. (7.42)

Thus, we can prove “assumption” (7.31) in ideal solutions by the more specific assumption between parame-

ters (7.40). The nonnegativity of the EPR immediately follows as discussed.

We can consider the importance of the local detailed balance between constants (7.40) from another point

of view. Assume there is no chemostatted species. Then, the relationship enables us to prove that ⃗𝐽( ⃗𝑐 ) = 0 if
and only if the EPR as defined in Eq. (7.39) vanishes. The “only if” part immediately follows from Eq. (7.39).

To discuss the “if” part, we rearrange a term in Eq. (7.39) as

∑
𝛼∈𝐴

𝖲𝛼𝑒𝜇𝛼( ⃗𝑐 ) = ∑
𝛼∈𝐴

𝖲𝛼𝑒𝜇∘𝛼 + 𝑅𝑇 ln (∏
𝛼∈𝐴

𝑐𝖲𝛼𝑒𝛼 ) = ∑
𝛼∈𝐴

𝖲𝛼𝑒𝜇∘𝛼 − 𝑅𝑇 ln
∏𝛼∈𝐴 𝑐

𝜈𝛼𝑒
𝛼

∏𝛼∈𝐴 𝑐
𝜈′𝛼𝑒
𝛼

.

The mass action kinetics further transforms this as

∑
𝛼∈𝐴

𝖲𝛼𝑒𝜇∘𝛼 − 𝑅𝑇 ln
∏𝛼∈𝐴 𝑐

𝜈𝛼𝑒
𝛼

∏𝛼∈𝐴 𝑐
𝜈′𝛼𝑒
𝛼

= ∑
𝛼∈𝐴

𝖲𝛼𝑒𝜇∘𝛼 + 𝑅𝑇 ln
𝑘+𝑒
𝑘−𝑒

− 𝑅𝑇 ln
𝐽+𝑒 ( ⃗𝑐 )
𝐽−𝑒 ( ⃗𝑐 )

.

Thus, we obtain

Σ̇( ⃗𝑐 ) = −1𝑇 ∑𝑒
𝐽𝑒( ⃗𝑐 )[ ∑

𝛼∈𝐴
𝖲𝛼𝑒𝜇∘𝛼 + 𝑅𝑇 ln

𝑘+𝑒
𝑘−𝑒

] + 𝑅∑
𝑒
𝐽𝑒( ⃗𝑐 ) ln

𝐽+𝑒 ( ⃗𝑐 )
𝐽−𝑒 ( ⃗𝑐 )

.

The second term is positive unless ⃗𝐽( ⃗𝑐 ) = 0. If we want to claim that Σ̇( ⃗𝑐 ) = 0 implies ⃗𝐽( ⃗𝑐 ) = 0, it is natural
to assume

∑
𝛼∈𝐴

𝖲𝛼𝑒𝜇∘𝛼 + 𝑅𝑇 ln
𝑘+𝑒
𝑘−𝑒

= 0. (7.43)

That is, Eq. (7.40) naturally emerges between the two notions, detailed balance and thermodynamic equilibrium.

However, when the diluteness is not assured, Eq. (7.40) will lose itsmeaning because themass action kinetics

and the expression (7.33) are no longer valid. One solution is to make the rate constants dependent on concen-

trations and replace ln 𝑐𝛼 in Eq. (7.33) with ln[𝛾𝛼( ⃗𝑐 )𝑐𝛼], where 𝛾𝛼( ⃗𝑐 ) is the so-called activity coefficient [120].
Then, Eq. (7.40) is recovered with the concentration dependent rate constants and the activity coefficients.

However, the concentration dependence of these quantities are elusive in general situations (one interesting

approach is the Debye–Hückel theory [131, 132], which involves several parameters). Instead of introducing

those quantities, we simply put Eq. (7.31) as an assumption to consider the nonequilibrium thermodynamics of

CRNs. Still, it should be verified in the future whether the relation actually holds, analytically, computationally,

or experimentally. It is worthnoting that a recent paper [133] proved that we can derive Eq. (7.31) by assuming

the local detailed balance in non-ideal stochastic CRNs (i.e., described mesoscopically [134]) and a consistency

between such a mesoscopic and the macroscopic description.
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7.2.3 Force-current structure

As in MJPs, the thermodynamic force and the current are connected by the Onsager matrix (cf. Eq. (6.29))

𝖫𝑒𝑒′( ⃗𝑐 ) = 𝑅−1Λ(𝐽+𝑒 ( ⃗𝑐 ), 𝐽−𝑒 ( ⃗𝑐 ))𝛿𝑒𝑒′, (7.44)

which leads to

⃗𝐽( ⃗𝑐 ) = 𝖫( ⃗𝑐 ) ⃗𝐹( ⃗𝑐 ), (7.45)

the CRN analog of Eq. (3.8). Due to the properties of log mean Λ, described in Sec. 6.3.3, we can define an
inner product and a norm as

⟨ ⃗𝐹′, ⃗𝐹″⟩𝑐 ≔ ⟨ ⃗𝐹′, 𝖫( ⃗𝑐 ) ⃗𝐹″⟩, ‖ ⃗𝐹′‖2𝑐 ≔√⟨ ⃗𝐹′, ⃗𝐹′⟩𝑐. (7.46)

The EPR is given by the geometric expression

Σ̇( ⃗𝑐 ) = ‖ ⃗𝐹( ⃗𝑐 )‖2𝑐. (7.47)

7.2.4 Conservativeness and detailed balance

Conservative forces are defined as those provided by∇; for example, the thermodynamic force of a closed ideal
solution is conservative because Eq. (7.30) is rewritten as

⃗𝐹( ⃗𝑐 ) = −∇(�⃗�( ⃗𝑐 )/𝑇), (7.48)

where �⃗�( ⃗𝑐 ) = (𝜇𝛼( ⃗𝑐 ))𝛼∈𝐴. Although conservativeness is independent of the ideal property, we focus on ideal
systems in this section to discuss the equivalence between conservativeness and detailed balance.

Since ∇ only takes the internal species into account, as discussed, Eq. (7.30) does not imply conservative

force unless 𝐴ext is an empty set. Rather, we generally have

𝐹𝑒( ⃗𝑐 ) = −1𝑇 ∑
𝛼∈𝐴ext

𝖲𝛼𝑒𝜇𝛼( ⃗𝑐ext) − [∇(�⃗�( ⃗𝑐 )/𝑇)]𝑒 (7.49)

for ideal solutions. By using the apparent rate constant 𝑘±𝑒 and the relationship (7.40), it is further rearranged as

⃗𝐹( ⃗𝑐 ) = ⃗𝐹0 − ∇𝜑( ⃗𝑐 ) with 𝐹0,𝑒 = 𝑅 ln
𝑘+𝑒
𝑘−𝑒

, ⃗𝜑( ⃗𝑐 ) = 𝑅 ln ⃗𝑐.

Therefore, ideal solutions satisfy assumption C1 in Sec. 3.3 with 𝜑( ⃗𝑐 ) = 𝑅 ln ⃗𝑐. Thus, the general discussion
reveals that the following are equivalent:

(1) There exists a potential ⃗𝜓 ∈ ℝ𝑁 such that

⃗𝐹0 = −∇ ⃗𝜓. (7.50)

(2’) There exists �⃗� ∈ ℝ𝑁
>0 such that ⃗𝐽(�⃗�) = 0.

Condition (1) can be stated differently: for any ⃗𝐶 ∈ ℝ|𝐸| such that ∇T ⃗𝐶 = 0, the rate constants satisfy

∏
𝑒
(𝑘+𝑒 )𝐶𝑒 =∏

𝑒
(𝑘−𝑒 )𝐶𝑒, (7.51)

which is called the Wegscheider condition [135]. Since Eq. (7.51) is equivalent to ⟨ ⃗𝐶, ⃗𝐹0⟩ = 0, this statement
means ⃗𝐹0 ∈ im∇, i.e., condition (1).

Let us confirm assumption C2 through a concrete CRN. We consider the following CRN:

∅
1
⇌ 𝑋1, 𝑋1 + 𝑋4

2
⇌ 𝑋2, 𝑋2

3
⇌ 𝑋3 + 𝑋4, 𝑋3

4
⇌ ∅. (7.52)
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The gradient operator is given by

∇T =
⎛
⎜
⎜
⎝

1 −1 0 0
0 1 −1 0
0 0 1 −1
0 −1 1 0

⎞
⎟
⎟
⎠

. (7.53)

It has a conservation law

⃗𝜆 = (0, 1, 0, 1)T, (7.54)

which represents the conservation of moiety 𝑋4, which is included in 𝑋2 and 𝑋4. Then, Eq. (3.12) reads

𝑒𝜓2−𝜇 + 𝑒𝜓4−𝜇 = 𝑐2 + 𝑐4 (7.55)

and solved by

𝜇 = ln
𝑒𝜓2 + 𝑒𝜓4
𝑐2 + 𝑐4

. (7.56)

Therefore, in this CRN, condition (1) is equivalent to the statement

(2) For any concentration ⃗𝑐 ∈ ℝ4
>0, there exists �⃗� ∈ ℝ4

>0 such that ⃗𝐽(�⃗�) = 0 and 𝜋2 + 𝜋4 = 𝑥2 + 𝑥4.

Generally speaking, condition (2) means the existence of an equilibrium state in the stoichiometric manifold

ℳ( ⃗𝑐 ), as is evident from the expression (7.15).

7.2.5 Cycle and breaking of detailed balance

Unlike the MJP case, cycles as defined by ker∇T are not always interpreted as a cycle on a graph. Let us take

the Brusselator (7.23) as an example. In this CRN, ker∇T is a one-dimensional space spanned by

⃗𝐶 = (0, 1, 1)T. (7.57)

While this vanishes when multiplied by∇T = 𝗇𝐵, it cannot be canceled solely by 𝐵. That is, although the chain
of reactions, 𝑒 = 2 then 3, leaves the total concentration unchanged, it cannot be understood as a cycle on the
graph of complexes.

The discrepancy between ker∇T and ker𝐵 is called the deficiency [136],

𝛿 ≔ dim ker∇T − dim ker𝐵. (7.58)

It can be proved that the deficiency is also given as

𝛿 = |𝑃| − 𝐿 − dim im∇T. (7.59)

The deficiency-zero theorem shows that when the mass action kinetics is assumed, 𝛿 = 0 if and only if the
CRN has a complex-balanced steady state for any value of rate constants as long as it is weakly reversible [118,

136]. Here, a CRN is defined to be weakly reversible if there is a directed chain of reactions with positive rates

between any two complexes. As already mentioned, the existence of a complex-balanced steady state implies

the global stability of the CRN; thus, 𝛿 > 0 is required for the CRN to exhibit nonlinear behavior. For example,

the Brusselator model has 𝛿 = 1, so it can show a limit cycle, as shown in Example 7.5.

7.2.6 Comparison with MJPs

An MJP can be regarded as a CRN with unimolecular reactions. Let us consider a CRN with species 𝑖 ∈
{1,… ,𝑁} and reactions involving just one molecule,

𝑋𝑖 ⇌ 𝑋𝑗. (7.60)



7.3. HOUSEKEEPING-EXCESS DECOMPOSITION 63

In this CRN, the total concenration∑𝑖 𝑐𝑖 is conserved. Then, there are𝑁 complexes, each of which is composed

of a single molecule, and matrix 𝗇 can be the identity. The reaction rates are given as

𝐽𝑒( ⃗𝑐 ) = 𝑘𝑒𝑐r(𝑒) − 𝑘−𝑒𝑐p(𝑒), (7.61)

where r(𝑒) and p(𝑒) denote the reactant and the product molecule of reaction 𝑒. If we define

𝑝𝑖 =
𝑐𝑖

∑𝑖 𝑐𝑖
, (7.62)

the rate equation it obeys reads

𝑑𝑝𝑖
𝑑𝑡 = ∑

𝑒
𝐵𝑖𝑒(𝑘𝑒𝑝r(𝑒) − 𝑘−𝑒𝑝p(𝑒)), (7.63)

which is nothing but the master equation of an MJP with transition rates 𝑅±𝑒 = 𝑘±𝑒 .
If 𝑘B and 𝑅 are equated, the thermodynamics of MJPs coincides with that of ideal dilute solutions. The

local detailed balance between constants (7.40), which includes entropic contribution coming from the internal

degrees of freedom of molecules, looks similar but slightly different from Eq. (6.20), the local detailed balance

in MJPs; however, such a contribution is sometimes taken into account in MJPs when the mesoscopic states

have internal degrees of freedom [73], but is usually neglected for simplicity.

7.3 Housekeeping-excess decomposition

The geometric housekeeping-excess decomposition can be performed perfectly in the same way as in MJPs.

Section 6.4 explains the geometric housekeeping-excess decomposition in CRNs by replacing ⃗𝑝 with ⃗𝑐. In this
section, instead, we review the problem of the Hatano–Sasa decomposition in CRNs, which will be overcome

by the geometric decomposition.

The HS decomposition is defined for CRNs by [26, 27]

Σ̇hk,HS( ⃗𝑐 ) ≔ ⟨ ⃗𝐽( ⃗𝑐 ), ⃗𝐹( ⃗𝑐 ss)⟩, (7.64)

Σ̇ex,HS( ⃗𝑐 ) ≔ ⟨ ⃗𝐽( ⃗𝑐 ), ⃗𝐹( ⃗𝑐 ) − ⃗𝐹( ⃗𝑐 ss)⟩. (7.65)

When ⃗𝐽± is provided by the mass action kinetics, we can show that (cf. Eq. (4.19))

Σ̇ex,HS( ⃗𝑐 ) = −𝑅 𝜕𝜕𝑡𝐷( ⃗𝑐(𝑡)‖ ⃗𝑐 ss(𝑠))||𝑠=𝑡, (7.66)

where 𝐷( ⃗𝑐‖ ⃗𝑐 ′) = ∑𝛼 𝑐𝛼 ln(𝑐𝛼/𝑐
′
𝛼) − 𝑐𝛼 + 𝑐′𝛼 is the generalized KL divergence and ⃗𝑐 ss(𝑠) is the instantaneous

steady state. This is proved as

𝜕
𝜕𝑡𝐷( ⃗𝑐(𝑡)‖ ⃗𝑐 ss(𝑠))||𝑠=𝑡 = ∑

𝛼

𝜕𝑐𝛼
𝜕𝑡 ln

𝑐𝛼
𝑐ss𝛼

= ∑
𝑒
𝐽𝑒( ⃗𝑐 )∑

𝛼
∇𝑒𝛼 ln

𝑐𝛼
𝑐ss𝛼

= −1𝑅 ∑𝑒
𝐽𝑒( ⃗𝑐 )(𝐹𝑒( ⃗𝑐 ) − 𝐹𝑒( ⃗𝑐 ss)),

where the last equality follows from Eq. (7.50). The positivity of the HS excess EPR can be proved if ⃗𝑐 ss is
complex balanced, 𝐵 ⃗𝐽( ⃗𝑐 ss) = 0 [26, 27]. However, if the complex balance is violated in the steady state, which
is often the case with CRNs with non-zero deficiency, the HS excess EPR becomes negative [59].

On the other hand, the geometric excess (and housekeeping) EPR is always non-negative, as is obvious from

the definition

Σ̇hk( ⃗𝑐 ) = min
�⃗�′∈𝒞

‖ ⃗𝐹( ⃗𝑐 ) − ⃗𝐹′‖2𝑐 (7.67)

Σ̇ex( ⃗𝑐 ) = min
�⃗�′

‖ ⃗𝐹′‖2𝑐 s.t. ∇T𝖫( ⃗𝑐 ) ⃗𝐹′ = ∇T ⃗𝐽( ⃗𝑐 ), (7.68)

where𝒞 = im∇. Even if there is no stable steady state, we can interpret the excess EPR as the minimum EPR

to cause the instantaneous dynamics.
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In Ref. [19], we gave this geometric decomposition, which was the first proposal of housekeeping-excess

decomposition that applies to general nonlinear systems. Soon later, an independent study [59] and our another

paper [60] revealed that we can conduct such a decomposition by using nonlinear relations between forces and

currents. While the nonlinear formulations look better than the present definition based on the linear Onsager

relation, the situation is not so simple. The method in Ref. [59] needs to first split the total EPR into two

convex functions (let us call them 1 and 2), decompose them into houskeeping and excess parts (so we have

hk1, ex1, hk2, and ex2), and combine them to define the decomposition (i.e., hk=hk1+hk2, ex=ex1+ex2). This

procedure makes it difficult to obtain thermodynamic inequalities. On the other hand, although Ref. [60] leads

to nonlinear and thus tight inequalities with a sophisticated definition of decomposition, the diversion to other

kinds of system is still elusive. Hence, to clarify the coherent structure among nonequilibrium systems and get

trade-off relations, the linear formulation can be the best avenue.

7.4 Thermodynamic trade-off relations

Inequalities similar to the TUR and TSL are proven to be available in our previous study [18], and the general

framework can generalize them.

7.4.1 Thermodynamic uncertainty relation

In Ref. [18], we proved the inequality

Σ̇( ⃗𝑐 ) ≥ 𝑅
(𝑑𝑡𝑐𝛼)2

�̃�𝛼𝛼( ⃗𝑐 )
, (7.69)

where

�̃�𝛼𝛽( ⃗𝑐 ) ≔
1
2 ∑𝑒

∇𝛼𝑒∇𝛽𝑒(𝐽+𝑒 ( ⃗𝑐 ) + 𝐽−𝑒 ( ⃗𝑐 )) (7.70)

is called the scaled diffusion coefficient. When we consider the system-size expansion of the chemical master

equation, microscopic description of CRNs, this quantity divided by the volume parameter appears as the dif-

fusion coefficient matrix [137–139]. Thus, we can interpret �̃�𝛼𝛽 as the measure of the intrinsic fluctuation in
the CRN.

On the other hand, the general inequality (5.29) provides

Σ̇ex( ⃗𝑐 ) ≥
|⟨𝑑𝑡 ⃗𝑐, �⃗�⟩|2

‖∇�⃗�‖2𝑐
. (7.71)

As in the MJP case, we can show

‖∇�⃗�‖2𝑐 ≤
1
2𝑅 ∑𝑒

(𝐽+𝑒 ( ⃗𝑐 ) + 𝐽−𝑒 ( ⃗𝑐 ))[∇�⃗�]2𝑒 (7.72)

by the hierarchy between means (6.32). We also realize that

1
2 ∑𝑒

(𝐽+𝑒 ( ⃗𝑐 ) + 𝐽−𝑒 ( ⃗𝑐 ))[∇�⃗�]2𝑒 = ⟨�⃗�, �̃�( ⃗𝑐 )�⃗�⟩ ≕ �̃�𝒪( ⃗𝑐 ), (7.73)

which generalizes the diffusivity in MJPs (6.78) to CRNs. As a result, we obtain the generalized version of TUR

Σ̇ex( ⃗𝑐 ) ≥ 𝑅
|⟨𝑑𝑡 ⃗𝑐, �⃗�⟩|2

�̃�𝒪( ⃗𝑐 )
. (7.74)

With 𝒪𝛼′ = 𝛿𝛼′𝛼, it leads to Eq. (7.69).
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Figure 7.1: (Adapted from Ref. [19]) Time evolution of the concentration in the Brusselator model. The blue

star indicates the unstable steady state. On the trajectory, the part colored in yellow indicates high excess EPR.

7.4.2 Thermodynamic speed limit

The generalized Wasserstein defined for MJPs also works in CRNs: it is defined by [19, 110]

𝒲( ⃗𝑐𝑎, ⃗𝑐𝑏) ≔ inf
�⃗�,�⃗�√

𝜏∫
𝜏

0
‖∇ ⃗𝜓(𝑡)‖2𝑐(𝑡)𝑑𝑡 (7.75)

with conditions

⃗𝑐(0) = ⃗𝑐𝑎, ⃗𝑐(𝜏) = ⃗𝑐𝑏, 𝑑 ⃗𝑐
𝑑𝑡 = ∇T𝖫( ⃗𝑐(𝑡))∇ ⃗𝜓(𝑡). (7.76)

The distance is finite only if ⃗𝑐𝑎 and ⃗𝑐𝑏 are on the stoichiometric manifold (otherwise, they cannot be connected
by the continuity equation). With this quantities, we obtain the TSL [19]

𝜏Σex ≥ 𝒲( ⃗𝑐(0), ⃗𝑐(𝜏))2. (7.77)

7.5 Example

Here, we numerically observe the housekeeping-excess decomposition in a model of chemical oscillation. We

adopt the Brusselator model given in Eq. (7.23). We assume the mass action kinetics and set the (apparent) rate

constants 𝑘1 = 𝑘3 = 𝑘−1 = 𝑘−3 = 1, 𝑘2 = 10, and 𝑘−2 = 0.1. Then, the time evolution of the concentration
distribution ⃗𝑐 = (𝑐𝑋, 𝑐𝑌)T is obtained by solving

𝑑𝑐𝑋
𝑑𝑡 = 1 − 𝑐𝑋 − 10𝑐𝑋 + 0.1𝑐𝑌 + 𝑐2𝑋𝑐𝑌 − 𝑐3𝑋,

𝑑𝑐𝑌
𝑑𝑡 = 10𝑐𝑋 − 0.1𝑐𝑌 − 𝑐2𝑋𝑐𝑌 + 𝑐3𝑋. (7.78)

This CRN has an unstable steady state ⃗𝑐 ss = (1, 10)T. The time evolution given by numerical integration is
shown in Fig. 7.1. The system shows a limit cycle where concentration oscillation is permanently sustained.

We also compute the housekeeping and the excess EPR (Fig. 7.2). The advantage of the geometric decompo-

sition is that it does not refer to any steady states unlike the HS decomposition. Now, we do not have physically

meaningful steady states, so we cannot define the HS decomposition. If we wrongly adopt the unstable steady

state, we will obtain physically unreasonable negative values (shown in the lower panel of Fig. 7.2).

The computed EPRs suggest a connection between the excess EPR and the dynamics. In Fig. 7.2, the

squared norm of 𝑑 ⃗𝑐/𝑑𝑡 is plotted in arbitrary units. This quantity and the excess EPR have two peaks at the

same time, whereas the EPR and the housekeeping EPR have only one. This correlation is reasonable because

the excess EPR gives the minimum dissipation to induce the (apparent) dynamics. The region on the trajectory

where the excess EPR becomes large compared to the housekeeping one is colored in yellow in Fig. 7.1.
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Figure 7.2: (Adapted from Ref. [19]) Decomposed EPRs in one period of oscillation. In the upper panel, we

show the time evolution of EPR, housekeeping EPR, and excess EPR. In addition, we plot the squared norm of

𝑑 ⃗𝑐/𝑑𝑡 in arbitrary units. We can confirm the correlation with the excess EPR. This is consistent with the fact

that the excess EPR is supposed to reflects nonstationary aspect of the system. The bottom panel shows the HS

excess EPR defined with a wrong stationary state, which exhibits negative values.



Chapter 8

Hydrodynamic systems

In this chapter, we consider macroscopic hydrodynamic systems described by the Navier–Stokes equation.

CRNs and hydrodynamic systems are two of the main subjects of the historical field of nonequilibrium thermo-

dynamics called irreversible thermodynamics [12]. We discuss how a force-current structure is established in

this system, which recasts not only studies in irreversible thermodynamics but also an older result, the Helmholtz

minimum dissipation theorem.

8.1 Notation

For two 𝑑 × 𝑑 matrices 𝗔 and 𝗕, the Hilbert–Schmidt inner product is defined by

𝗔∶𝗕 ≔ ∑
𝑖,𝑗
𝐴𝑖𝑗𝐵𝑖𝑗 = tr(𝗔T𝗕), (8.1)

where tr is the trace. The colon indicates dot product over two indices. We write the induced norm √𝗔∶𝗔
simply as |𝗔|.

We can decompose a matrix 𝗔 into a symmetric and an anti-symmetric part by

𝗔s = 𝗔 + 𝗔T
2 , 𝗔a = 𝗔 − 𝗔T

2 . (8.2)

The symmetric part can be split further into the identity part (tr 𝗔)𝗜/𝑑 and the traceless part

𝗔s,tl = 𝗔s − 1
𝑑(tr 𝗔)𝗜, (8.3)

where 𝗜 is the identity matrix. Note that the anti-symmetric matrix is always traceless. It is easy to see that this
sepearation leads to the decomposition of the inner product

𝗔∶𝗕 = 𝗔s∶𝗕s + 𝗔a∶𝗕a = 𝗔s,tl∶𝗕s,tl + 1
𝑑(tr 𝗔)(tr 𝗕) + 𝗔a∶𝗕a. (8.4)

For a vector field 𝒖(𝒙), we define its gradient 𝛁𝒖(𝒙) as a tensor field with elements 𝜕𝑖𝑢𝑗(𝒙) (𝜕𝑖 ≔ 𝜕/𝜕𝑥𝑖).
The dot product between tensor field 𝗔(𝒙) and the differential operator 𝛁 gives a vector field with elements

[𝛁 ⋅ 𝗔(𝒙)]𝑖 = ∑𝑗 𝜕𝑗𝐴𝑗𝑖(𝒙).

8.2 Dynamics

8.2.1 Setup

We consider a compressible Newtonian fluid in a region Ω ⊂ ℝ𝑑 with boundary 𝜕Ω [140]. For simplicity, we

assume Ω is connected and bounded. We define 𝒏(𝒙) as the normal vector at 𝒙 ∈ 𝜕Ω directed to the external

region; thus, the Gauss theorem is provided as

∫
Ω
𝛁 ⋅ 𝒖(𝒙)𝑑𝑉 = ∫

𝜕Ω
𝒖(𝒙) ⋅ 𝒏(𝒙)𝑑𝑆. (8.5)

67
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We explain what “compressible” and “Newtonian” mean soon later.

The system is described by the density field 𝜌(𝒙) ∈ ℝ>0 and the velocity field 𝒗(𝒙) ∈ ℝ𝑑 (𝒙 ∈ Ω). We

allow the fluid to cross the boundary, so 𝒗(𝒙) ⋅ 𝒏(𝒙) may not vanish in general. The dynamics is given by the
continuity equation of density

𝜕𝜌
𝜕𝑡 (𝒙) = −𝛁 ⋅ (𝜌(𝒙)𝒗(𝒙)) (8.6)

and the Navier–Stokes equation [140, 141]

𝜌(𝒙)𝐷𝒗𝐷𝑡 (𝒙) = 𝛁 ⋅ 𝜎𝜌,𝒗(𝒙), (8.7)

where 𝐷/𝐷𝑡 is the material derivative defined by

𝐷
𝐷𝑡 =

𝜕
𝜕𝑡 + 𝒗(𝒙) ⋅ 𝛁, (8.8)

and 𝜎𝜌,𝒗 is the stress tensor. For compressible Newtonian fluids, it reads

𝜎𝜌,𝒗(𝒙) = −𝑝(𝜌(𝒙))𝗜 + [𝜁(𝜌(𝒙)) − 2
𝑑𝜇(𝜌(𝒙))](𝛁 ⋅ 𝒗(𝒙))𝗜 + 2𝜇(𝜌(𝒙))𝛁S𝒗(𝒙). (8.9)

Here, 𝑝(𝜌) is the pressure determined by the density, 𝜁(𝜌) the volume viscosity, 𝜇(𝜌) the shear viscosity, and
𝛁S the symmetric gradient defined by

𝛁S𝒖(𝒙) ≔ [𝛁𝒖(𝒙)]𝑠. (8.10)

We define the second viscosity coefficient 𝜆 by 𝜁 − (2/𝑑)𝜇 to write the stress tensor simply as

𝜎𝜌,𝒗(𝒙) = −𝑝(𝜌(𝒙))𝗜 + 𝜆(𝜌(𝒙))(𝛁 ⋅ 𝒗(𝒙))𝗜 + 2𝜇(𝜌(𝒙))𝛁S𝒗(𝒙). (8.11)

In addition, we note that the stress tensor has another expression

𝜎𝜌,𝒗(𝒙) = −𝑝(𝜌(𝒙))𝗜 + 𝜁(𝜌(𝒙))(𝛁 ⋅ 𝒗(𝒙))𝗜 + 2𝜇(𝜌(𝒙))[𝛁𝒗]s,tl(𝒙). (8.12)

Compressibility is defined as being not incompressible, which is defined by the condition 𝛁 ⋅ 𝒗(𝒙) = 0.
As usual, when discussing incompressible fluids, we also assume homogeneity 𝛁𝜌(𝒙) = 0, which results in
𝜕𝑡𝜌(𝒙) = −𝛁 ⋅ (𝜌(𝒙)𝒗(𝒙)) = 0. Then, 𝜁 and 𝜇 become constants1. Thus, if the fluid is incompressible, the

stress tensor becomes much simpler as

�̃�𝜌,𝒗(𝒙) = −𝑝(𝒙)𝗜 + 2𝜇𝛁S𝒗(𝒙). (8.13)

The condition 𝛁 ⋅ 𝒗(𝒙) = 0 implies that 𝛁S𝒗(𝒙) is traceless.
Newtonianity means that 𝜁 and 𝜇 are independent of the velocity gradients 𝛁𝒗. It is usually violated in

polymeric fluids, where non-Newtonian viscosity arises from the slow relaxation of internal degrees of free-

dom [142, 143].

We allow the boundary to move. Let 𝒗𝑤(𝒙) denote the velocity at 𝒙 ∈ 𝜕Ω. Then, the time derivative of a
spatial integral of a time-dependent field ∫Ω 𝜙(𝒙)𝑑𝑉 has two contributions: first, there is a contribution from

the integrand,

∫
Ω

𝜕𝜙
𝜕𝑡 (𝒙)𝑑𝑉. (8.14)

In addtion, we also have a contribution from the boundary

∫
𝜕Ω

𝜙(𝒙)𝒗𝑤(𝒙) ⋅ 𝒏(𝒙)𝑑𝑆. (8.15)

1But 𝑝 does not. This is because the deviation from the constant value 𝑝(𝜌 = const.) becomes relevant.
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Therefore, we find

𝑑
𝑑𝑡 ∫Ω

𝜙(𝒙)𝑑𝑉 = ∫
Ω

𝜕𝜙
𝜕𝑡 (𝒙)𝑑𝑉 +∫

𝜕Ω
𝜙(𝒙)𝒗𝑤(𝒙) ⋅ 𝒏(𝒙)𝑑𝑆. (8.16)

This is called the Reynolds transport theorem [144]. If we adopt the no-slip boundary condition, thewall velocity

𝒗𝑤 should coincide with 𝒗. If the region is moving at a constant velocity −𝑽, we have 𝒗𝑤(𝒙) = −𝑽 at any

𝒙 ∈ 𝜕Ω, e.g., when Ω is the outside of Ω𝑐 and Ω𝑐 is the body of a microswimmer moving at 𝑽.
When 𝜙(𝒙) is of the form 𝜌(𝒙)𝑄(𝒙), the continuity equation of density (8.6) leads to the formula

𝑑
𝑑𝑡 ∫Ω

𝜌(𝒙)𝑄(𝒙)𝑑𝑉 = ∫
Ω
𝜌(𝒙)𝐷𝑄𝐷𝑡 (𝒙)𝑑𝑉 −∫

𝜕Ω
𝜌(𝒙)𝑄(𝒙)(𝒗(𝒙) − 𝒗𝑤(𝒙)) ⋅ 𝒏(𝒙)𝑑𝑆, (8.17)

because

∫
Ω

𝜕(𝜌𝑄)
𝜕𝑡 (𝒙)𝑑𝑉 = ∫

Ω
𝜌𝜕𝑄𝜕𝑡 𝑑𝑉 +∫

Ω

𝜕𝜌
𝜕𝑡 𝑄𝑑𝑉

= ∫
Ω
𝜌𝜕𝑄𝜕𝑡 𝑑𝑉 −∫

Ω
𝛁 ⋅ (𝜌𝒗)𝑄𝑑𝑉

= ∫
Ω
𝜌[𝜕𝑄𝜕𝑡 + 𝒗 ⋅ 𝛁𝑄]𝑑𝑉 −∫

𝜕Ω
𝜌𝑄𝒗 ⋅ 𝒏𝑑𝑆,

where we used the Gauss theorem in the third line. We omitted the spatial dependence in the above calculation,

which we also do in the following if there is no risk of misunderstanding.

8.2.2 Continuity equation

Although we have a continuity equation of density (Eq. (8.6)), Equation (8.7) does not possess the form of

continuity equation (3.1). It turns into a continuity equation if we define the momentum current by

𝗝𝜌,𝒗 ≔ 𝜌𝒗 ⊗ 𝒗 − 𝜎𝜌,𝒗, (8.18)

where [𝒗 ⊗ 𝒗]𝑖𝑗 = 𝑣𝑖𝑣𝑗. Then, the Navier–Stokes equation is rewritten as

𝜕𝜌𝒗
𝜕𝑡 = −𝛁 ⋅ 𝗝𝜌,𝒗(𝒙). (8.19)

because

𝜌𝐷𝒗𝐷𝑡 = 𝜌𝜕𝒗𝜕𝑡 + 𝜌𝒗 ⋅ 𝛁𝒗 =
𝜕𝜌𝒗
𝜕𝑡 − 𝒗

𝜕𝜌
𝜕𝑡 + 𝜌𝒗 ⋅ 𝛁𝒗

=
𝜕𝜌𝒗
𝜕𝑡 + 𝒗𝛁 ⋅ (𝜌𝒗) + 𝜌𝒗 ⋅ 𝛁𝒗 =

𝜕𝜌𝒗
𝜕𝑡 + 𝛁 ⋅ (𝜌𝒗 ⊗ 𝒗).

Equation (8.19) is valid even if the fluid is incompressible with 𝜎𝜌,𝒗 replaced with �̃�𝜌,𝒗 (Eq. (8.13)).
Now, we have continuity equations (8.6) and (8.19); however, the currents in these equations do not neces-

sarily provide irreversible contributions. We can judge whether a term in an equation of motion is reversible or

not by considering time reversal. For the continuity equation of density (8.6), both terms flip their signs when

we perform time reversal 𝑡 → −𝑡 and 𝒗 → −𝒗, which means the equation is totally reversible. On the other
hand, under that transformation, the terms of the Navier–Stokes equation (8.19) behave as

𝜕𝜌𝒗
𝜕𝑡 →

𝜕𝜌𝒗
𝜕𝑡 ,

𝜌𝒗 ⊗ 𝒗 + 𝑝(𝜌)𝗜 → 𝜌𝒗 ⊗ 𝒗 + 𝑝(𝜌)𝗜,
−𝜆(𝜌)(𝛁 ⋅ 𝒗)𝗜 − 2𝜇(𝜌)𝛁S𝒗 → 𝜆(𝜌)(𝛁 ⋅ 𝒗)𝗜 + 2𝜇(𝜌)𝛁S𝒗.
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Therefore, the Navier–Stokes equation includes irreversible terms; the momentum current is split into into the

reversible and irreversible parts as

𝗝𝜌,𝒗 = 𝗝rev𝜌,𝒗 + 𝗝irr𝜌,𝒗, (8.20)

𝗝rev𝜌,𝒗 = 𝜌𝒗 ⊗ 𝒗 + 𝑝(𝜌)𝗜, (8.21)

𝗝irr𝜌,𝒗 = −𝜆(𝜌)(𝛁 ⋅ 𝒗)𝗜 − 2𝜇(𝜌)𝛁S𝒗. (8.22)

Finally, the continuity equations turn out to have the same structure as Eq. (3.1) with the correspondence

𝑥 ↔ (𝜌, 𝒗) (8.23)

𝑓rev(𝑥) ↔ ( − 𝛁 ⋅ (𝜌𝒗), −𝛁 ⋅ 𝗝rev𝜌,𝒗) (8.24)

∇∗ ↔ (∅, −𝛁 ⋅ ) (8.25)

𝐽(𝑥) ↔ (∅, 𝗝irr𝜌,𝒗). (8.26)

When the fluid is incompressible, 𝜌 falls into a parameter. The momentum current and its irreversible

component are given as

𝗝𝜌,𝒗 = 𝗝rev𝜌,𝒗 + �̃�irr𝜌,𝒗 with �̃�irr𝜌,𝒗 = −2𝜇𝛁S𝒗. (8.27)

8.2.3 State space, force space, and gradient operator

When considering thermodynamics, 𝗝irr𝜌,𝒗 will be the unique source of irreversibility. Because it is only related
to the dynamics of the velocity field, we focus on the space of velocity fields and consider the density 𝜌 as

given. We set 𝒮0 to a space of vector fields with certain smoothness. As the irreversible current is a symmetric
tensor field, we can think of defining ℱ to be the space of symmetric tensor fields. These spaces are equipped

with the usual inner products; for two tensor fields 𝗝 and 𝗝′, we define

⟨𝗝, 𝗝′⟩ ≔ ∫
Ω
𝗝(𝒙)∶𝗝′(𝒙)𝑑𝑉. (8.28)

To be more careful, we would need to consider separately the space of currents and that of forces, one of which

is the dual space of the other. It is also required to treat 𝜕𝑡(𝜌𝒗) as a linear map 𝒖 ↦ ∫Ω 𝗝∶𝛁𝒖𝑑𝑉 rather than just
a vector field. However, since such mathematical rigorousness does little good to physics, we do not consider

this point except Sec. 8.4.

Having said that, the domain of the gradient operator∇ does matter. To get the correspondence∇∗ ↔ −𝛁⋅,
we need to define ∇ by

∇ ∶ 𝒮b ∋ 𝒘 ↦ 𝛁S𝒘 ∈ ℱ (8.29)

with

𝒮b ≔ {𝒘 ∈ 𝒮0 ∣ 𝒘(𝒙) = 0 if 𝒙 ∈ 𝜕Ω}. (8.30)

Then, for any 𝒘 ∈ 𝒮b and 𝗝 ∈ ℱ, we have

⟨𝛁S𝒘, 𝗝⟩ = ⟨𝒘,−𝛁 ⋅ 𝗝⟩ (8.31)

because

⟨𝛁S𝒘, 𝗝⟩ = 1
2 ∫Ω

∑
𝑖,𝑗
(𝜕𝑖𝑤𝑗 + 𝜕𝑗𝑤𝑖)𝖩𝑖𝑗𝑑𝑉

= 1
2( −∫

Ω
∑
𝑖,𝑗
𝑤𝑗𝜕𝑖𝖩𝑖𝑗𝑑𝑉 +∫

𝜕Ω
∑
𝑖,𝑗
𝑤𝑗𝖩𝑖𝑗𝑛𝑖𝑑𝑆) +

1
2( −∫

Ω
∑
𝑖,𝑗
𝑤𝑖𝜕𝑗𝖩𝑖𝑗𝑑𝑉 +∫

𝜕Ω
∑
𝑖,𝑗
𝑤𝑖𝖩𝑖𝑗𝑛𝑗𝑑𝑆)

= −∫
Ω
∑
𝑖,𝑗
𝑤𝑖𝜕𝑗𝖩𝑖𝑗𝑑𝑉 = ⟨𝒘,−𝛁 ⋅ 𝗝⟩,

where we used the Gauss theorem in the second line and the symmetry of 𝗝 in the third line. The boudary term
is removed because 𝒖 ∈ 𝒮b. We note that while the gradient operator is defined on 𝒮b, the adjoint mapsℱ to a

wider space, as is often the case with unbounded operators.

As the domain of ∇ is set to 𝒮b, its kernel becomes trivial; i.e., 𝛁𝒖 = 0 implies 𝒖 = 0. This means that we
have no nontrivial conservation law.
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8.3 Thermodynamics

8.3.1 Local equilibrium assumption

The Navier–Stokes equation implicitly assumes local equilibrium; it includes pressure that depends on the den-

sity, the existence of which is a typical consequence of the local equilibrium assumption [12, 141]. We further

suppose that the temperature is homogeneous, which has also been assumed by writing the Navier–Stokes equa-

tion as in Eq. (8.7); otherwise, parameters depend on the inhomogeneous temperature, and we need to deal with

thermal transport.

The local equilibrium assumption also allows us to define the specific entropy (entropy per unit mass, which

we also call entropy density) [12]

𝑠(𝒙) = 𝑠(𝑢(𝒙), 𝜌(𝒙)) (8.32)

by

𝑠(𝑈/𝑁,𝑁/𝑉) ≔ 𝑆TD(𝑈, 𝑉, 𝑁)/𝑁 = 𝑆TD(𝑈/𝑁, 𝑉/𝑁, 1), (8.33)

where 𝑆TD(𝑈, 𝑉, 𝑁) is the macroscopic entropy function and the second equality follows from the homogeneity

of 𝑆TD. The internal energy density per unit mass 𝑢 gives the total energy density by

𝑒 = 𝑢 + 1
2|𝒗|

2, (8.34)

where the second term represents the kinetic energy. The entropy density satisfies the thermodynamic relation

𝑑𝑠 = 1
𝑇𝑑𝑢 +

𝑝
𝑇𝑑𝜌

−1 (8.35)

because of the macroscopic relation 𝑇𝑑𝑆 = 𝑑𝑈+𝑃𝑑𝑉 −𝜇𝑑𝑁. From the Lagrangian perspective, it is translated

into [140]

𝐷𝑠
𝐷𝑡 =

1
𝑇
𝐷𝑢
𝐷𝑡 +

𝑝
𝑇
𝐷𝜌−1

𝐷𝑡 . (8.36)

8.3.2 Entropy production rate and thermodynamic force

Given the entropy density, we can compute the EPR. First, the system entropy is given by

𝑆 = ∫
Ω
𝜌(𝒙)𝑠(𝒙)𝑑𝑉. (8.37)

Its time derivative is computed with formula (8.17) as

𝑑𝑆
𝑑𝑡 = ∫

Ω
𝜌𝐷𝑠𝐷𝑡𝑑𝑉 −∫

𝜕Ω
𝜌(𝒙)𝑠(𝒙)(𝒗(𝒙) − 𝒗𝑤(𝒙)) ⋅ 𝒏(𝒙)𝑑𝑆. (8.38)

The entropy change in the environment also consists of the boundary entropy outflow from Ω and the local

heat dissipation as

̇𝑆env = ∫
𝜕Ω

𝜌(𝒙)𝑠(𝒙)(𝒗(𝒙) − 𝒗𝑤(𝒙)) ⋅ 𝒏(𝒙)𝑑𝑆 −
1
𝑇 ∫Ω

̇𝑞(𝒙)𝑑𝑉, (8.39)

where the heat influx ̇𝑞 is given by the first law of thermodynamics as

̇𝑞 = 𝜌𝐷𝑒𝐷𝑡 − �̇� (8.40)

with work rate �̇� due to viscosity

�̇�(𝒙) = 𝛁 ⋅ (𝜎𝜌,𝒗(𝒙) ⋅ 𝒗(𝒙)), (8.41)
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which yields the total work on the boundary

�̇� = ∫
Ω
�̇�(𝒙)𝑑𝑉 = ∫

𝜕Ω
𝒗(𝒙) ⋅ [𝜎𝜌,𝒗(𝒙) ⋅ 𝒏(𝒙)]𝑑𝑆. (8.42)

Thus, we can define the EPR as

Σ̇𝜌,𝒗 ≔
𝑑𝑆
𝑑𝑡 +

̇𝑆env = ∫
Ω
𝜌(𝐷𝑠𝐷𝑡 −

1
𝑇
𝐷𝑒
𝐷𝑡 )𝑑𝑉 + 1

𝑇 ∫𝜕Ω
𝒗(𝒙) ⋅ [𝜎𝜌,𝒗(𝒙) ⋅ 𝒏(𝒙)]𝑑𝑆. (8.43)

Using the thermodynamic relation (8.36) and the definition of the total energy (8.34), we find the relations

𝐷𝑠
𝐷𝑡 −

1
𝑇
𝐷𝑒
𝐷𝑡 = −1𝑇𝒗 ⋅

𝐷𝒗
𝐷𝑡 +

𝑝
𝑇
𝐷𝜌−1

𝐷𝑡 . (8.44)

The terms on the right-hand side can be transformed as

𝜌𝒗 ⋅ 𝐷𝒗𝐷𝑡 = 𝒗 ⋅ [𝛁 ⋅ 𝜎𝜌,𝒗] (8.45)

from the Navier–Stokes equation and

𝜌
𝐷𝜌−1

𝐷𝑡 = −1𝜌
𝐷𝜌
𝐷𝑡 = −1𝜌(

𝜕𝜌
𝜕𝑡 + 𝒗 ⋅ 𝛁𝜌) = −1𝜌(−𝛁 ⋅ (𝜌𝒗) + 𝒗 ⋅ 𝛁𝜌) = 𝛁 ⋅ 𝒗 (8.46)

due to the continuity equation. Thus, we obtain

Σ̇𝜌,𝒗 =
1
𝑇 ∫Ω

(−𝒗 ⋅ [𝛁 ⋅ 𝜎𝜌,𝒗] + 𝑝𝛁 ⋅ 𝒗)𝑑𝑉 + 1
𝑇 ∫𝜕Ω

𝒗 ⋅ [𝜎𝜌,𝒗 ⋅ 𝒏]𝑑𝑆

= 1
𝑇 ∫Ω

(𝛁𝒗∶𝜎𝜌,𝒗 + 𝑝𝛁 ⋅ 𝒗)𝑑𝑉

= −1𝑇 ∫Ω
𝛁𝒗∶𝗝irr𝜌,𝒗𝑑𝑉,

where the last line follows from the definition of 𝜎𝜌,𝒗 and 𝗝irr𝜌,𝒗. Due to the symmetry of 𝗝irr𝜌,𝒗, it can be further
written as

Σ̇𝜌,𝒗 = −1𝑇 ∫Ω
𝛁S𝒗∶𝗝irr𝜌,𝒗𝑑𝑉. (8.47)

Its positivity immediately follows from

−𝛁S𝒗∶𝗝irr𝜌,𝒗 = 𝛁S𝒗∶[[𝜁(𝜌) − 2
𝑑𝜇(𝜌)](𝛁 ⋅ 𝒗)𝗜 + 2𝜇(𝜌)𝛁S𝒗]

= [(𝛁𝒗)s,tl + 1
𝑑(𝛁 ⋅ 𝒗)𝗜]∶[𝜁(𝜌)(𝛁 ⋅ 𝒗)𝗜 + 2𝜇(𝜌)(𝛁𝒗)s,tl]

= 2𝜇(𝜌)(𝛁𝒗)s,tl∶(𝛁𝒗)s,tl + 𝜁(𝜌)(𝛁 ⋅ 𝒗)2 ≥ 0

because the viscosity coefficients are positive. Finally, equation (8.47) reveals that the thermodynamic force

should be given by

𝗙𝒗 = −1𝑇𝛁
S𝒗. (8.48)

As a consequence, we find the formula (3.7) in hydrodynamics

Σ̇𝜌,𝒗 = ⟨𝗝irr𝜌,𝒗, 𝗙𝒗⟩. (8.49)

The thermodynamic force (8.48) is connected to the irreversible current as

𝗝irr𝜌,𝒗 = 𝑇𝜆(𝜌)(tr 𝗙𝒗)𝗜 + 2𝑇𝜇(𝜌)𝗙𝒗. (8.50)
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Thus, we can define the Onsager operator by

Π𝜌 ∶ 𝗙′ ↦ 𝑇𝜆(𝜌)(tr 𝗙′)𝗜 + 2𝑇𝜇(𝜌)𝗙′, (8.51)

which is positive and symmetric because

⟨𝗙′, Π𝜌(𝗙″)⟩ =
1
𝑇 ∫Ω

[2𝜇(𝜌)(𝗙′)s,tl∶(𝗙″)s,tl + 𝜁(𝜌)(tr 𝗙′)(tr 𝗙″)]𝑑𝑉.

It establishes the third relation (3.8) of the force-current structure. Consequently, the EPR is given by

Σ̇𝜌,𝒗 = ‖𝗙𝒗‖2𝜌, (8.52)

where the norm ‖⋅‖𝜌 is induced by the inner product

⟨𝗙′, 𝗙″⟩𝜌 ≔ ⟨𝗙′, Π𝜌(𝗙″)⟩. (8.53)

The EPR vanishes when 𝗙𝒗 = 0 holds, which means 𝛁𝒗 is anti-symmetric:

𝜕𝑖𝑣𝑗 = −𝜕𝑗𝑣𝑖. (8.54)

This condition is satisfied, for example, when the system is rotating as a rigid body; Let 𝑑 = 2 and the system
rotates around the origin at angular velocity 𝜔. Then, the velocity at 𝒙 = (𝑥, 𝑦) is

𝒗(𝒙) = (−𝜔𝑦, 𝜔𝑥). (8.55)

Thus, we have 𝜕𝑥𝑣𝑦 = −𝜕𝑦𝑣𝑥 and no dissipation occurs.

8.3.3 Incompressible case

Even for the incompressible systems, the ERP is obtained as

Σ̇𝜌,𝒗 = −1𝑇 ∫Ω
𝛁S𝒗∶�̃�irr𝜌,𝒗𝑑𝑉 =

2𝜇
𝑇 ∫

Ω
𝛁S𝒗∶𝛁S𝒗𝑑𝑉. (8.56)

Thus, the thermodynamic force is defined in the same way, and we find the Onsager relation

�̃�irr𝜌,𝒗 = Π̃𝜌(𝗙𝒗) with Π̃𝜌 ∶ 𝗙′ ↦ 2𝑇𝜇𝗙′. (8.57)

8.3.4 Conservativeness

Consider a situation where 𝒗𝑤(𝒙) = 𝒗(𝒙) for all 𝒙 ∈ 𝜕Ω and 𝒗𝑤(𝒙) ⋅𝒏(𝒙) = 0; i.e., no slip occurs at the bound-
ary and the position and the shape of 𝜕Ω do not change. This situation is often discussed in hydrodynamics.

Then, take arbitrarily a velocity field 𝒗0 such that 𝒗0(𝒙) = 𝒗𝑤(𝒙) on 𝜕Ω. It decomposes the thermodynamic
force as

𝗙𝒗 = 𝗙0 − 𝛁S𝝋𝒗, (8.58)

where

𝗙0 = −1𝑇𝛁
S𝒗0, 𝝋𝒗 =

𝒗 − 𝒗0
𝑇 . (8.59)

Since 𝒗 is mapped to 𝝋𝒗 in a reversible manner, this expression shows that the thermodynamic force can satisfy
assumption C1 of Sec. 3.3. Although this is quite a formal discussion based on an arbitrary velocity field 𝒗0,
following Sec. 3.3, we find that the following statements are equivalent:

(1) There is a velocity field 𝝍 such that 𝝍(𝒙) = 0 on 𝜕Ω and 𝗙0 = −𝛁S𝝍.

(2) There exists a velocity field 𝒖 such that 𝗝irr𝜌,𝒖 = 0.
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8.3.5 Cycles

Formally, we can define “cyclic tensor fields” by

𝛁 ⋅ 𝗝′ = 0. (8.60)

However, properties of such tensor fields are not yet well understood, and further research is awaited in the

future.

8.4 Housekeeping-excess decomposition

8.4.1 General results

Hydrodynamic systems often exhibit turbulence and steady states become hard to obtain [69, 145]; hence,

we cannot hope that techniques based on steady states would be useful. On the other hand, the geometric

housekeeping-excess decomposition is available even in such cases because it only relies on the force-current

structure [20].

The geometric decomposition deals with projection of forces in a linear (functional) space, so we need to

choose properly what space to discuss. Not every symmetric tensor has the form −𝑇𝛁S𝒖, so we need to restrict
ℱ to a narrower space. We re-define the space of forces ℱ∗ by

ℱ∗ ≔ {−𝛁S𝝍 ∣ 𝝍 ∶ Ω → ℝ𝑑}. (8.61)

Then, the conservative subspace 𝒞 and its orthogonal complement 𝒞⟂ are defined by

𝒞 ≔ {−𝛁S𝝓 ∣ 𝝓(𝒙) = 0, ∀𝒙 ∈ 𝜕Ω}, (8.62)

𝒞⟂ = {𝗙′ ∈ ℱ∗ ∣ 𝛁 ⋅ Π𝜌(𝗙′) = 0}, (8.63)

where the condition of 𝒞⟂ is given in this way because

⟨−𝛁S𝝓, 𝗙′⟩𝜌 = ⟨𝝓,𝛁 ⋅ Π𝜌(𝗙′)⟩

and it becomes zero for any 𝝓 only if 𝛁 ⋅ Π𝜌(𝗙′) = 0.
The housekeeping EPR is provided by

Σ̇hk𝜌,𝒗 ≔ inf
𝗙′∈𝒞

‖𝗙𝒗 − 𝗙′‖2𝜌. (8.64)

It vanishes when 𝒗 satisfies

𝛁S(𝒗/𝑇 − 𝝓) = 0 (8.65)

with some 𝝓. Then, there exists a velocity field, 𝒖 ≔ 𝒗 − 𝑇𝝓, that satisfies the same boundary condition as 𝒗
and provides zero dissipation Σ̇𝜌,𝒖 = 0 for any 𝜌. That is, the housekeeping EPR becomes zero if the boundary

condition imposed on 𝒗 allows such an “equilibrium” velocity field. This is prohibited, e.g., when the boundary
exerts permanent shear to the system, like in a flow between two plates moving in the opposite directions. Then,

the housekeeping EPR becomes finite, evaluating the dissipation due to boundary movements.

If the boundary velocity is zero, or if the system does not have a boundary, like those with the periodic

boundary condition, the housekeeping EPR is identically zero. This can be the case, for example, in homoge-

neous isotropic turbulence [69].

The excess EPR is also given as

Σ̇ex𝜌,𝒗 ≔ inf
𝗙′∈ℱ∗

‖𝗙′‖2𝜌, s.t. 𝛁 ⋅ Π𝜌(𝗙′) = 𝛁 ⋅ 𝗝irr𝜌,𝒗. (8.66)

As the condition only involves the irreversible part of the continuity equation, it only means that 𝗙′ reproduces
the dissipative portion of the total motion. The orthogonal complement of 𝒞 provides the excess EPR with

another expression

Σ̇ex𝜌,𝒗 = inf
𝗙′∈𝒞⟂

‖𝗙𝒗 − 𝗙′‖2𝜌. (8.67)
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8.4.2 Incompressible case

When the system is incompressible, the space of forces is changed into

̃ℱ∗ ≔ {−𝛁S𝝍 ∣ 𝝍 ∶ Ω → ℝ𝑑, 𝛁 ⋅ 𝝍 = 0}. (8.68)

Then, the conservative subspace becomes

̃𝒞 ≔ {−𝛁S𝝓 ∣ 𝝓(𝒙) = 0, ∀𝒙 ∈ 𝜕Ω; 𝛁 ⋅ 𝝓 = 0}. (8.69)

Consequently, the orthogonal complement significantly changes as

̃𝒞⟂ = {𝗙′ ∈ ̃ℱ∗ ∣ ∃𝑞 ∶ Ω → ℝ s.t. 𝛁 ⋅ Π̃𝜌(𝗙′) = −𝛁𝑞} (8.70)

because, when 𝗙′ = −𝛁S𝝍,

⟨𝗙′, −𝛁S𝝓⟩𝜌 = ⟨𝛁 ⋅ Π̃𝜌(−𝛁S𝝍), 𝝓⟩

and it is zero for any 𝝓 satisfying the conditions in Eq. (8.69) if and only if there exists a scalar field 𝑞 such that
𝛁 ⋅ Π̃𝜌(−𝛁S𝝍) = −𝛁𝑞. In fact, then we have

⟨𝛁 ⋅ Π̃𝜌(−𝛁S𝝍), 𝝓⟩ = −⟨𝛁𝑞, 𝝓⟩ = ⟨𝑞,𝛁 ⋅ 𝝓⟩ = 0,

where the second equality is due to the boundary condition on 𝝓 and the last one due to the incompressibility.
The definitions of the housekeeping and excess EPRs are valid as in Eqs. (8.64) and (8.67). Equation (8.66)

can be modified and rewritten as

Σ̇ex𝜌,𝒗 ≔ inf
𝗙′∈ℱ∗

‖𝗙′‖2𝜌, s.t. ∃𝑞 s.t. 𝛁 ⋅ Π̃𝜌(𝗙′) + 𝛁𝑞 = 𝛁 ⋅ �̃�irr𝜌,𝒗 (8.71)

= 1
𝑇2 inf𝒗′

‖−𝛁S𝒗′‖2𝜌, s.t. 𝛁 ⋅ 𝒗′ = 0 & ∃𝑞 s.t. − 𝜇𝛁2𝒗′ + 𝛁𝑞 = −𝜇𝛁2𝒗. (8.72)

8.4.3 Stokes equation

The condition of Eq. (8.70) reduces to the Stokes equation [146, 147]. The Stokes equation is usually stated as

a differential equation for 𝒗 and 𝑝 as

𝜇𝛁2𝒗 = 𝛁𝑝, 𝛁 ⋅ 𝒗 = 0. (8.73)

It is derived from the Navier–Stokes equation for incompressible fluids

𝜌𝜕𝒗𝜕𝑡 = −𝛁 ⋅ (𝜌𝒗 ⊗ 𝒗 + 𝑝𝗜) + 2𝜇𝛁 ⋅ (𝛁S𝒗). (8.74)

By using the incompressibility, the right-hand side can be transformed as

−𝛁 ⋅ (𝜌𝒗 ⊗ 𝒗 + 𝑝𝗜) + 2𝜇𝛁 ⋅ (𝛁S𝒗) = −𝜌𝒗 ⋅ 𝛁𝒗 − 𝛁𝑝 + 𝜇𝛁2𝒗.

Setting 𝜕𝒗/𝜕𝑡 to zero and neglecting the convection term 𝜌𝒗 ⋅ 𝛁𝒗, we obtain the Stokes equation (8.73). Ne-
glecting the convection term is justified when the Reynolds number is small2.

The condition of 𝒞⟂ is rearranged into the Stokes equation because

−𝛁𝑞 = 𝛁 ⋅ Π̃𝜌(−𝛁S𝝍) = −2𝜇𝑇𝛁 ⋅ (𝛁S𝝍) = −𝜇𝑇𝛁2𝝍, (8.75)

where we used the incompressibility of 𝝍 in the last equality.

It is worth noting that pressure 𝑝 in the Stokes equation is determined by 𝒗. By taking divergence of the
Stokes equation, we find the Poisson equation, 𝛁2𝑝 = 0. Given a velocity field 𝒗, the equation 𝜇𝛁2𝒗 = 𝛁𝑝
provides a Neumann boundary condition, with which 𝛁2𝑝 = 0 can be solved.

2Reynolds number is defined by the ratio of inertial forces to viscous forces. One important class of low-Reynolds-number systems

is microswimmers, such as bacteria moving in water.
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Moreover, the solution of the Stokes equation is unique for each boundary condition on 𝒗. Let a velocity
field 𝒗 satisfy 𝒗 = 𝒗𝑤 on 𝜕Ω and 𝒗⋆ be a solution to the Stokes equation. Then,

𝜇∫
Ω
|𝛁𝒗|2𝑑𝑉 = 𝜇∫

Ω
|𝛁(𝒗 − 𝒗⋆) + 𝛁𝒗⋆|2𝑑𝑉

= 𝜇∫
Ω
|𝛁(𝒗 − 𝒗⋆)|2𝑑𝑉 + 𝜇∫

Ω
|𝛁𝒗⋆|2𝑑𝑉 + 2𝜇∫

Ω
𝛁(𝒗 − 𝒗⋆)∶𝛁𝒗⋆𝑑𝑉

= 𝜇∫
Ω
|𝛁(𝒗 − 𝒗⋆)|2𝑑𝑉 + 𝜇∫

Ω
|𝛁𝒗⋆|2𝑑𝑉 − 2𝜇∫

Ω
(𝒗 − 𝒗⋆) ⋅ 𝛁 ⋅ [𝛁𝒗⋆]𝑑𝑉

= 𝜇∫
Ω
|𝛁(𝒗 − 𝒗⋆)|2𝑑𝑉 + 𝜇∫

Ω
|𝛁𝒗⋆|2𝑑𝑉 − 2𝜇∫

Ω
(𝒗 − 𝒗⋆) ⋅ 𝛁2𝒗⋆𝑑𝑉

= 𝜇∫
Ω
|𝛁(𝒗 − 𝒗⋆)|2𝑑𝑉 + 𝜇∫

Ω
|𝛁𝒗⋆|2𝑑𝑉 − 2𝜇∫

Ω
(𝒗 − 𝒗⋆) ⋅ 𝛁𝑝𝑑𝑉

= 𝜇∫
Ω
|𝛁(𝒗 − 𝒗⋆)|2𝑑𝑉 + 𝜇∫

Ω
|𝛁𝒗⋆|2𝑑𝑉 + 2𝜇∫

Ω
𝛁 ⋅ (𝒗 − 𝒗⋆)𝑝𝑑𝑉

= 𝜇∫
Ω
|𝛁(𝒗 − 𝒗⋆)|2𝑑𝑉 + 𝜇∫

Ω
|𝛁𝒗⋆|2𝑑𝑉,

where we used the boundary condition and the Gauss theorem in the third and sixth lines, the incompressibility

in the fourth and last lines, and the Stokes equation in the fifth line. Therefore,

𝜇∫
Ω
|𝛁𝒗|2𝑑𝑉 ≥ 𝜇∫

Ω
|𝛁𝒗⋆|2𝑑𝑉 (8.76)

and the equality holds only if 𝛁(𝒗 − 𝒗⋆) vanishes everywhere. Because 𝒗 and 𝒗⋆ coincide on the boundary,

they must be identical; i.e., the solution to the Stokes equation is unique.

The above inequality can be proved if we replace 𝛁 with 𝛁S. Thus, we have revealed (cf. Eq. (8.56))

Σ̇𝜌,𝒗 ≥ Σ̇𝜌,𝒗⋆. (8.77)

That is to say, among incompressible velocity fields with a fixed boundary condition, the solution to the Stokes

equation provides the minimum dissipation. This is known as the Helmholtz dissipation theorem [140, 148].

8.4.4 Minimum dissipations

We continute to consider incompressible fluids. In Ref. [20], we have shown that

Σ̇hk𝜌,𝒗 = Σ̇𝜌,𝒗⋆ (8.78)

when the fluid is incompressible. This is easily proved by referring to the general property of the orthogonal

projection. Let 𝗙c = −𝛁𝝓∗ be the conservative force that provides the housekeeping EPR as

Σ̇hk𝜌,𝒗 = ‖𝗙𝒗 − 𝗙c‖2𝜌. (8.79)

The nonconservative force 𝗙nc = 𝗙𝒗 − 𝗙c is written as 𝗙𝒗∗ with

𝒗∗ ≔ 𝒗 − 1
𝑇𝝓

∗, (8.80)

which allows us to write Σ̇hk𝜌,𝒗 = Σ̇𝜌,𝒗∗. This velocity field satisfies incompressibility and coincides with 𝒗 on
the boundary because 𝝓∗ = 0 there. Moreover, since 𝗙nc belongs to ̃𝒞⟂3, there exists a scalar field 𝑞 such that

𝛁 ⋅ Π̃𝜌(𝛁S𝒗∗) = 𝜇𝑇𝛁2𝒗∗ = 𝛁𝑞. (8.81)

3This is a consequence of the orthogonal projection; but we can directly prove ⟨𝗙′, 𝗙nc⟩𝜌 = 0 for any 𝗙′ ∈ ̃𝒞.
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Therefore, 𝒗∗ satisfies the Stokes equation. Because the Stokes equation has a unique solution, we see 𝒗∗ = 𝒗⋆
and Eq. (8.78) is shown.

Equations (8.77) and (8.78) reveal that the housekeeping EPR we defined provides the minimum dissipation

under a fixed boundary condition. On the other hand, neglecting the convection term also enables us to inter-

pret the excess EPR as a genuine minimum EPR. The excess EPR was given as the minimum under a kinetic

constraint in Eq. (8.71). If one can always neglect the convection term 𝒗 ⋅ 𝛁𝒗, Eq. (8.71) turns into

Σ̇ex𝜌,𝒗 = inf
𝗙′∈ℱ∗

‖𝗙′‖2𝜌, s.t. ∃𝑞 s.t. 𝜌𝜕𝒗𝜕𝑡 = −𝛁𝑞 − 𝛁 ⋅ Π̃𝜌(𝗙′) (8.82)

because

𝛁 ⋅ �̃�irr𝜌,𝒗 = −𝜌𝜕𝒗𝜕𝑡 − 𝛁 ⋅ (𝜌𝒗 ⊗ 𝒗 + 𝑝𝗜) = −𝜌𝜕𝒗𝜕𝑡 − 𝜌𝒗 ⋅ 𝛁𝒗 − 𝛁𝑝.

Pressure gradient 𝛁𝑝 is absorbed in 𝛁𝑞. Therefore, Eq. (8.82) shows that the excess EPR is the minimum

dissipation to induce the dynamics with the aid of a pressure field 𝑞.

8.5 Thermodynamic trade-off relations

In hydrodynamic systems, there are few established results on thermodynamic trade-offs except an inequality

we found in Ref. [20]. In this section, we explain that result and provide the derivation.

8.5.1 Thermodynamic uncertainty relation

The general result (5.29) provides an inequality for hydrodynamic systems as

Σ̇ex𝜌,𝒗 ≥
⟨−𝛁 ⋅ 𝗝irr𝜌,𝒗, 𝝍⟩2

Δ𝜌(𝝍)
for any 𝝍 s.t. 𝝍(𝒙) = 0, ∀𝒙 ∈ 𝜕Ω, (8.83)

where

Δ𝜌(𝝍) ≔ ⟨𝛁S𝝍,Π𝜌(𝛁S𝝍)⟩. (8.84)

The condition that 𝝍 = 0 on the boundary is required for 𝝍 to be in the domain of the gradient operator.

Formally, Eq. (8.83) is similar to the short-time TURs, but further discussion is required to understand the

physical meaning of the quantities.

In Ref. [20], we consider howEq. (8.83) can be understood as aTUR. If we further assume𝝍 to be divergence
free (𝛁 ⋅ 𝝍 = 0), we can derive the inequality

Σ̇ex𝜌,𝒗 ≥
1

𝜇max𝑇‖𝛁𝝍‖2
(∫

Ω
[ 𝜕𝜕𝑡(𝜌𝒗 ⋅ 𝝍) − 𝜌𝒗 ⋅

𝐷𝝍
𝐷𝑡 ]𝑑𝑉)

2
, (8.85)

where 𝜇max = max𝒙∈Ω 𝜇(𝜌(𝒙)) and ‖𝛁𝝍‖2 ≔ ∫Ω |𝛁𝝍(𝒙)|
2𝑑𝑉. We may interpret the denominator as the

quantity of fluctuations by system parameter 𝜇max𝑇 and the spatial variation ‖𝛁𝝍‖. This interpretation is also
supported by the fact that the viscosity coefficient is determined by the Green–Kubo formula [149]. The nu-

merator indicates a kind of changing rate of ⟨𝜌𝒗, 𝝍⟩ because

∫
Ω

𝜕
𝜕𝑡(𝜌𝒗 ⋅ 𝝍)𝑑𝑉 = 𝑑

𝑑𝑡 ∫Ω
(𝜌𝒗 ⋅ 𝝍)𝑑𝑉 (8.86)

when the place and shape ofΩ do not change (𝒗𝑤 ⋅𝒏 = 0) due to Eq. (8.16). We have an additional contribution

𝜌𝒗 ⋅ (𝐷𝝍/𝐷𝑡), which can be interpreted as subtracting a convectional aspect of the change in ⟨𝜌𝒗, 𝝍⟩. This term
will vanish if 𝝍 is given as

𝝍(𝒙, 𝑡) = 𝒂(𝜱−1
𝑡 (𝒙)) (8.87)
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with a vector field 𝒂 and the so-called pathline 𝜱. The pathline is defined as the solution to

𝜕
𝜕𝑡𝜱𝑡(𝒙) = 𝒗(𝜱𝑡(𝒙), 𝑡) (8.88)

and represents the position of a particle at time 𝑡 that started from 𝒙.
First, we prove that when 𝝍 is given as in Eq. (8.87), 𝜌𝒗 ⋅(𝐷𝝍/𝐷𝑡) becomes zero. We can show𝐷𝝍/𝐷𝑡 = 0.

By the chain rule, we have

𝜕
𝜕𝑡𝝍(𝒙, 𝑡) =

𝜕𝜱−1
𝑡 (𝒙)
𝜕𝑡 ⋅ [𝛁𝒂](𝜱−1

𝑡 (𝒙)). (8.89)

The time derivative of 𝜱−1
𝑡 (𝒙) is given by

𝜕𝑡𝜱−1
𝑡 (𝒙) = −𝒗(𝒙, 𝑡) ⋅ 𝛁𝜱−1

𝑡 (𝒙). (8.90)

To prove this equality, we first confirm that for any 𝒚,

𝒚 = 𝜱−1
𝑡 (𝜱𝑡(𝒚)).

Thus, by taking the time derivative, we get

0 = [𝜕𝑡𝜱−1
𝑡 ](𝜱𝑡(𝒚)) + 𝜕𝑡𝜱𝑡(𝒚) ⋅ 𝛁𝜱−1

𝑡 (𝜱𝑡(𝒚)) = [𝜕𝑡𝜱−1
𝑡 ](𝜱𝑡(𝒚)) + 𝒗(𝜱𝑡(𝒚), 𝑡) ⋅ 𝛁𝜱−1

𝑡 (𝜱𝑡(𝒚)).

By setting 𝒚 = 𝜱−1
𝑡 (𝒙), we obtain Eq. (8.90). Therefore, we finally find

𝐷𝝍
𝐷𝑡 = 𝜕𝑡𝜱−1

𝑡 (𝒙) ⋅ 𝛁𝒂(𝜱−1
𝑡 (𝒙)) + 𝒗(𝒙, 𝑡) ⋅ 𝛁𝜱−1

𝑡 (𝒙) ⋅ 𝛁𝒂(𝜱−1
𝑡 (𝒙)) = 0,

where we used Eq. (8.90) in the last equality.

Next, let us derive Eq. (8.85) from Eq. (8.83) by using the divergence free condition 𝛁 ⋅ 𝝍 = 0. The

denominator in the right-hand side of Eq. (8.83) becomes

Δ𝜌(𝝍) = 2𝑇∫
Ω
𝜇(𝜌(𝒙))|𝛁S𝝍(𝒙)|2𝑑𝑉

because tr(𝛁S𝝍) = 𝛁 ⋅ 𝝍 = 0. By the inequality 𝜇(𝜌(𝒙)) ≤ 𝜇max, we get

Δ𝜌(𝝍) ≤ 2𝜇max𝑇∫
Ω
|𝛁S𝝍(𝒙)|2𝑑𝑉.

Further, we find

Δ𝜌(𝝍) ≤ 𝜇max𝑇‖𝛁𝝍‖2 (8.91)

because

∫
Ω
|𝛁S𝜓(𝒙)|2𝑑𝑉 = 1

4 ∑𝑖,𝑗
∫
Ω
(𝜕𝑖𝜓𝑗 + 𝜕𝑗𝜓𝑖)2𝑑𝑉

= 1
2 ∑𝑖,𝑗

∫
Ω
𝜕𝑖𝜓𝑗(𝜕𝑖𝜓𝑗 + 𝜕𝑗𝜓𝑖)𝑑𝑉

= −12 ∑𝑖,𝑗
∫
Ω
𝜓𝑗𝜕2𝑖 𝜓𝑗𝑑𝑉

= 1
2 ∑𝑖,𝑗

∫
Ω
(𝜕𝑖𝜓𝑗)2𝑑𝑉 = 1

2‖𝛁𝝍‖
2,

where we used symmetry in the second line and the divergence-free condition and the boundary condition in

the third line.
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Couette
flow

Total Housekeeping Excess

Figure 8.1: (Adapted from Ref. [20]) Decomposition of the dynamics and the EPR in a shear flow. The entire

motion is split into the Couette flow, which is a stationary flow, and a perturbative component. This seperation

perfectly corresponds to the housekeeping-excess decomposition in this simple solution.

The continuity equation of momentum (8.19) rewrites the numerator as

⟨−𝛁 ⋅ 𝗝irr𝜌,𝒗, 𝝍⟩ = ⟨𝜕𝑡(𝜌𝒗) + 𝛁 ⋅ 𝗝rev𝜌,𝒗 , 𝝍⟩.

The term including the reversible current is further reformed as

⟨𝛁 ⋅ 𝗝rev𝜌,𝒗 , 𝝍⟩ = −⟨𝗝rev𝜌,𝒗 , 𝛁𝝍⟩ = −∫
Ω
(𝜌𝒗 ⊗ 𝒗 + 𝑝(𝜌)𝗜)∶𝛁𝝍𝑑𝑉

= −∫
Ω
𝜌𝒗 ⋅ [(𝒗 ⋅ 𝛁)𝝍]𝑑𝑉,

where the second line is proved by using 𝗜 ∶ 𝛁𝝍 = 𝛁 ⋅ 𝝍 and considering the summation carefully. Thus, we

find

⟨−𝛁 ⋅ 𝗝irr𝜌,𝒗, 𝝍⟩ = ∫
Ω
(
𝜕𝜌𝒗
𝜕𝑡 ⋅ 𝝍 − 𝜌𝒗 ⋅ [(𝒗 ⋅ 𝛁)𝝍])𝑑𝑉

= ∫
Ω
(
𝜕𝜌𝒗
𝜕𝑡 ⋅ 𝝍 + 𝜌𝒗 ⋅

𝜕𝝍
𝜕𝑡 − 𝜌𝒗 ⋅

𝜕𝝍
𝜕𝑡 − 𝜌𝒗 ⋅ [(𝒗 ⋅ 𝛁)𝝍])𝑑𝑉

= ∫
Ω
( 𝜕𝜕𝑡(𝜌𝒗 ⋅ 𝝍) − 𝜌𝒗 ⋅

𝐷𝝍
𝐷𝑡 )𝑑𝑉. (8.92)

Applying the results in Eqs. (8.91) and (8.92) to Eq. (8.83), we obtain Eq. (8.85).

8.6 Example

We illustrate the decomposition through a toy model of shear flow in Ω = 𝑆1 × [0, 1] (𝑆1 is the 1-sphere of
length 1. See Fig. 8.1). The boundary is composed of the top and the bottom line, 𝜕Ω = 𝑆1 × ({0} ∪ {1}).
We fix the bottom 𝑆1 × {0} while letting the top 𝑆1 × {1} move in the 𝑥 direction at rate ̇𝛾. We assume the

no-slip boundary condition, i.e., every velocity field should satisfy 𝒗(𝑥, 0) = (0, 0)T and 𝒗(𝑥, 1) = ( ̇𝛾, 0)T.
Let the initial density and pressure be uniform and the initial velocity field be the Couette flow ( ̇𝛾𝑦, 0)T plus

the perturbation (𝜖0 sin(2𝜋𝑦), 0)T. The ansatz 𝜌(𝑡, 𝑥, 𝑦) = 𝜌 (const.), 𝑝(𝑡, 𝑥, 𝑦) = const., and 𝒗(𝑡, 𝑥, 𝑦) =
( ̇𝛾𝑦 + 𝜖(𝑡) sin(2𝜋𝑦), 0) solve the Navier–Stokes equation with 𝜖(𝑡) = 𝜖0𝑒−𝑡/𝜏 (𝜏 = 𝜌/(4𝜋2𝜇)) because the
Navier–Stokes equation turns into

̇𝜖(𝑡) = −
4𝜋2𝜇
𝜌 𝜖(𝑡), (8.93)
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which is because plugging the ansatz leads to

𝜌𝐷𝒗𝐷𝑡 = (𝜌 ̇𝜖(𝑡) sin(2𝜋𝑦)
0 )

and

𝛁 ⋅ (−𝑝𝗜 + 2𝜇𝛁S𝒗) = 𝜇𝛁2𝒗 = (−(2𝜋)
2𝜇𝜖(𝑡) sin(2𝜋𝑦)

0 ) .

Therefore, in this solution, the fluid motion relaxes to the Couette flow. Note that this is just a solution of a

partial differential equation, the Navier–Stokes equation, and tells nothing about uniqueness or stability. If the

shear is rather fast, the fluid will exihibit turbulence.

For this solution, the thermodynamic force becomes

𝗙𝜌,𝒗(𝑡, 𝑥, 𝑦) = −
̇𝛾 + 2𝜋𝜖(𝑡) cos(2𝜋𝑦)

2𝑇 (0 1
1 0) . (8.94)

The housekeeping is obtained by the optimization

Σ̇hk𝜌,𝒗 = inf
𝒖
‖𝗙𝜌,𝒗 − (−𝛁S𝒖)/𝑇‖2𝜌 (8.95)

= 1
𝑇 inf𝒖

∫
1

0
𝑑𝑦∫

𝑆1
𝑑𝑥[2𝜇{(𝜕𝑥𝑢𝑥)2 + (𝜕𝑦𝑢𝑦)2} + 𝜆(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦)2 + 𝜇{𝜕𝑥𝑢𝑦 + 𝜕𝑦𝑢𝑥 − ̇𝛾 − 2𝜋𝜖 cos(2𝜋𝑦)}2],

(8.96)

where 𝒖must vanish on 𝜕Ω. By taking the functional derivative with respect to 𝑢𝑥 and 𝑢𝑦, we find the solution
to the optimization must satisfy

−2𝜇𝜕2𝑥𝑢𝑥 − 𝜆𝜕𝑥(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦) − 𝜇𝜕𝑦{𝜕𝑥𝑢𝑦 + 𝜕𝑦𝑢𝑥 − ̇𝛾 − 2𝜋𝜖 cos(2𝜋𝑦)} = 0, (8.97)

−2𝜇𝜕2𝑦𝑢𝑦 − 𝜆𝜕𝑦(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦) − 𝜇𝜕𝑥{𝜕𝑥𝑢𝑦 + 𝜕𝑦𝑢𝑥 − ̇𝛾 − 2𝜋𝜖 cos(2𝜋𝑦)} = 0. (8.98)

A solution is given by

𝑢𝑥 = 𝜖 sin(2𝜋𝑦), 𝑢𝑦 = 0. (8.99)

It is not the unique solution, but the resulting force −𝛁S𝒖/𝑇 is unique because Eq. (8.95) is strictrly convex

regarding −𝛁S𝒖/𝑇. This solution corresponds to the perturbative part in the velocity field. Thus, the conserva-
tive force represents the perturbative, decaying component in the whole dynamics, while the nonconservative

force is associated with the Couette flow (see Fig 8.1).

As a result, the excess and housekeeping EPRs are given by

Σ̇hk𝜌,𝒗 = 𝜇 ̇𝛾2, Σ̇ex𝜌,𝒗 = 2𝜋2𝜖20𝜇𝑒−2𝑡/𝜏. (8.100)

As expected from the above discussion, the housekeeping EPR expresses the steady dissipation in the Couette

flow. On the other hand, the excess EPR is proportional to the squared perturation, 𝜖(𝑡)2, and approaches zero
as the system relaxes to the steady flow.



Chapter 9

Markovian open quantum systems

The final chapter discusses Markovian open quantum systems. Open quantum systems are influenced by envi-

ronments and evolve not unitarily. Markovian approximation enables us to describe the dynamics by an ordinary

differential equation of the density matrix. Assuming thermal relation on the interaction between the system

and the environments, thermodynamics can be established in this system.

9.1 Dynamics

9.1.1 Setup

We consider a quantum system with Hilbert space ℋ attached to single or multiple environments, like a heat

bath at inverse temperature 𝛽. Let 𝐻 denote the Hamiltonian of the system. We also write the Hermitian and

the anti-Hermitian operators onℋ by herm(ℋ) and anti(ℋ). The general space of linear operators is written
as opr(ℋ).

We assume the density matrix 𝜌 (𝜌 ∈ herm(ℋ), tr 𝜌 = 1, 𝜌 > 01) obeys the quantum master equation [13,

150, 151]

𝜕𝜌
𝜕𝑡 = − 𝑖

ℏ[𝐻, 𝜌] + 𝒟(𝜌), (9.1)

where ℏ is the reduced Planck constant, [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 is the commutator, and𝒟(𝜌) the dissipator defined
as

𝒟(𝜌) ≔ ∑
𝑘∈𝐾

𝒟𝑘(𝜌)

with 𝒟𝑘(𝜌) ≔ 𝛾𝑘(𝐿𝑘𝜌𝐿
†
𝑘 −

1
2{𝐿

†
𝑘𝐿𝑘, 𝜌}) + 𝛾−𝑘(𝐿−𝑘𝜌𝐿

†
−𝑘 −

1
2{𝐿

†
−𝑘𝐿−𝑘, 𝜌}). (9.2)

Here, 𝑘 ∈ 𝐾 labels jumps, {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴 is the anti-commutator, and 𝛾𝑘 > 0 and 𝐿𝑘 ∈ opr(ℋ) are jump
rates and jump operators satisfying 𝐿−𝑘 = 𝐿†𝑘. The last condition represents the reversibility of the jumps, which
was assumed in MJPs and CRNs, and is crucial for thermodynamic consideration. We assume the number of

jumps |𝐾| is finite. Additionally, we define 𝐾all ≔ 𝐾 ∪ {−𝑘 ∣ 𝑘 ∈ 𝐾}. The quantum master equation is also

refered to as the Lindblad equation or the Gorini–Kossakowski–Sudarshan–Lindblad equation.

The adjoint of the dissipator is also introduced

𝒟∗(𝑋) ≔ ∑
𝑘∈𝐾

𝒟∗
𝑘(𝑋)

with 𝒟∗
𝑘(𝑋) ≔ 𝛾𝑘(𝐿

†
𝑘𝑋𝐿𝑘 −

1
2{𝐿

†
𝑘𝐿𝑘, 𝑋}) + 𝛾−𝑘(𝐿

†
−𝑘𝑋𝐿−𝑘 −

1
2{𝐿

†
−𝑘𝐿−𝑘, 𝑋}). (9.3)

It is derived by ⟨𝑋,𝒟𝑘(𝜌)⟩ = ⟨𝒟∗
𝑘(𝑋), 𝜌⟩, where ⟨𝐴, 𝐵⟩ = tr(𝐴†𝐵) is the Hilbert–Schmidt inner product. It is

easily confirmed that𝒟∗
𝑘 satisfies the identity

𝒟∗
𝑘(𝐼ℋ) = 0. (9.4)

1An operator 𝑋 is positive 𝑋 > 0 if for any vector |𝜓⟩ ≠ 0, it satisfies ⟨𝜓|𝑋|𝜓⟩ > 0.
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The quantum master equation has two contributions: the unitary term and the dissipation term. We assume

the Hamiltonian is time-reversal symmetric and regard the unitary term as the reversible term of Eq. (3.1). Next,

we look for a continuity-equation representation of the dissipation term.

9.1.2 Continuity equation

Essentially, the idea to get the continuity-equation representation of the dissipator was provided in Ref. [152].

By using their idea, we derived a continuity equation that is alignedwith the context of quantum thermodynamics

in Ref. [20]. In this section, we summarize the result according to the terminology of Ref. [20].

First, we introduce an auxiliary space 𝔥 ≔ ℂ2|𝐾|, which is associated with the jumps. We also define

operators Γ𝑘 ∈ herm(ℂ2) and 𝕃𝑘 ∈ herm(ℂ2 ⊗ℋ) by

Γ𝑘 ≔ (𝛾𝑘/2 0
0 𝛾−𝑘/2

) , 𝕃𝑘 ≔ ( 0 𝐿−𝑘
𝐿𝑘 0 ) . (9.5)

The integrated operators Γ ∈ herm(𝔥) and 𝕃 ∈ herm(𝔥 ⊗ℋ) are given by

Γ ≔⨁
𝑘∈𝐾

Γ𝑘, 𝕃 ≔⨁
𝑘∈𝐾

𝕃𝑘, (9.6)

where⊗ and⊕ denote the tensor product and the direct sum.

Then, we can define the current operator 𝕁(𝜌) by

𝕁(𝜌) ≔ [𝕃, Γ ⊗ 𝜌]. (9.7)

It becomes an anti-Hermitian operator on 𝔥 ⊗ℋ. It can be split as

𝕁(𝜌) =⨁
𝑘∈𝐾

𝕁𝑘(𝜌), 𝕁𝑘(𝜌) ≔ [𝕃𝑘, Γ𝑘 ⊗ 𝜌], (9.8)

which has the further details

𝕁𝑘(𝜌) = ( 0 𝐽−𝑘(𝜌)
𝐽𝑘(𝜌) 0 ) , 𝐽𝑘(𝜌) =

1
2𝛾𝑘𝐿𝑘𝜌 −

1
2𝛾−𝑘𝜌𝐿𝑘. (9.9)

As a result, detailed balance, defined by 𝕁(𝜌) = 0, is characterized by 𝐽𝑘(𝜌) = 0. Note that we have 𝐽𝑘(𝜌)† =
−𝐽−𝑘(𝜌) and 𝕁

†
𝑘(𝜌) = −𝕁𝑘(𝜌).

The current operator is accompanied by a gradient super-operator that maps opr(ℋ) to opr(𝔥 ⊗ ℋ); we
define the gradient super-operator by

∇𝕃𝐴 ≔ [𝐼𝔥 ⊗𝐴, 𝕃], (9.10)

where 𝐼𝔥 is the identity operator on 𝔥. As 𝕃 is Hermitian, ∇𝕃 maps herm(ℋ) into anti(𝔥⊗ℋ). Its adjoint with
respect to the Hilbert–Schmidt inner product is given by

∇∗
𝕃𝔹 = tr𝔥[𝔹, 𝕃], (9.11)

where tr𝔥 indicates the partial trace. We call the adjoint∇∗
𝕃 the divergence super-operator. It also maps anti(𝔥⊗

ℋ) into herm(ℋ). Equation (9.11) is proved as follows: for any 𝐴 ∈ opr(ℋ) and 𝔹 ∈ opr(𝔥 ⊗ℋ),

⟨∇𝕃𝐴,𝔹⟩ = tr ([(𝐼𝔥 ⊗𝐴), 𝕃]†𝔹) = tr (𝕃(𝐼𝔥 ⊗𝐴†)𝔹 − (𝐼𝔥 ⊗𝐴†)𝕃𝔹)

= tr ((𝐼𝔥 ⊗𝐴†)(𝔹𝕃 − 𝕃𝔹))

= trℋ(𝐴† tr𝔥[𝔹, 𝕃]) = ⟨𝐴, tr𝔥[𝔹, 𝕃]⟩,

where we used the cyclic property of the trace in the second line and trℋ is the partial trace regardingℋ. The

gradient and divergence super-operators are decomposed as

∇𝕃𝐴 =⨁
𝑘∈𝐾

∇𝕃𝑘𝐴, ∇𝕃𝑘𝐴 ≔ [(𝐼ℂ2 ⊗𝐴), 𝕃𝑘] = ( 0 [𝐴, 𝐿−𝑘]
[𝐴, 𝐿𝑘] 0 ) , (9.12)

∇∗
𝕃𝔹 = ∑

𝑘∈𝐾
∇∗
𝕃𝑘𝔹, ∇∗

𝕃𝑘𝔹 ≔ trℂ2[𝔹, 𝕃𝑘], (9.13)
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where 𝐼ℂ2 and trℂ2 are the identity and the partial trace of ℂ2.

Finally, we can prove

∇∗
𝕃𝕁(𝜌) = 𝒟(𝜌). (9.14)

That is, the quantum master equation (9.1) has the form of Eq. (3.1) with reversible term −(𝑖/ℏ)[𝐻, 𝜌], gradient
∇𝕃, and current 𝕁(𝜌), with the density operator 𝜌 being the fundamental variable. Therefore, the state and the
force space can be provided as 𝒮0 = herm(ℋ) and ℱ = anti(𝔥 ⊗ℋ). The restricted state space 𝒮 is given by

imposing positivity.

Let us prove Eq. (9.14). According to Eq. (9.13) and the definition of𝒟(𝜌), it is sufficient to show

trℂ2[𝕁𝑘(𝜌), 𝕃𝑘] = 𝛾𝑘𝐿𝑘𝜌𝐿
†
𝑘 −

1
2{𝐿

†
𝑘𝐿𝑘, 𝜌} + 𝛾−𝑘𝐿−𝑘𝜌𝐿

†
−𝑘 −

1
2{𝐿

†
−𝑘𝐿−𝑘, 𝜌}. (9.15)

The left-hand side is transformed as

[𝕁𝑘(𝜌), 𝕃𝑘] = [ ( 0 𝐽−𝑘(𝜌)
𝐽𝑘(𝜌) 0 ) , ( 0 𝐿−𝑘

𝐿𝑘 0 ) ] = (𝐽−𝑘(𝜌)𝐿𝑘 − 𝐿−𝑘𝐽𝑘(𝜌) 0
0 𝐽𝑘(𝜌)𝐿−𝑘 − 𝐿𝑘𝐽−𝑘(𝜌)

) .

Therefore, we find

trℂ2[𝕁𝑘(𝜌), 𝕃𝑘] = 𝐽−𝑘(𝜌)𝐿𝑘 − 𝐿−𝑘𝐽𝑘(𝜌) + 𝐽𝑘(𝜌)𝐿−𝑘 − 𝐿𝑘𝐽−𝑘(𝜌)
= [𝐽𝑘(𝜌), 𝐿−𝑘] + h.c.,

where h.c. indicates the Hermitian conjugate. By the definition of 𝐽𝑘(𝜌), we have

[𝐽𝑘(𝜌), 𝐿−𝑘] =
1
2𝛾𝑘𝐿𝑘𝜌𝐿−𝑘 −

1
2𝛾−𝑘𝜌𝐿𝑘𝐿−𝑘 −

1
2𝛾𝑘𝐿−𝑘𝐿𝑘𝜌 +

1
2𝛾−𝑘𝐿−𝑘𝜌𝐿𝑘

= 1
2𝛾𝑘𝐿𝑘𝜌𝐿

†
𝑘 +

1
2𝛾−𝑘𝐿

†
𝑘𝜌𝐿𝑘 −

1
2𝛾𝑘𝐿

†
𝑘𝐿𝑘𝜌 −

1
2𝛾−𝑘𝜌𝐿

†
−𝑘𝐿−𝑘.

By adding this and the Hermitian conjugate, we can see that Eq. (9.15) holds, so Eq. (9.14) does.

9.1.3 Conservation law

In closed systems, where 𝐾 = ∅, an observable 𝒪 ∈ herm(ℋ) is conserved if it commutes with the Hamilto-
nian, [𝐻,𝒪] = 0, because then

𝑑
𝑑𝑡⟨𝒪⟩ = − 𝑖

ℏ tr(𝒪[𝐻, 𝜌]) =
𝑖
ℏ tr(𝜌[𝐻,𝒪]) = 0,

where ⟨𝒪⟩ = tr(𝒪𝜌) is the expectation value. The commutativity corresponds to the condition (3.4) in the
general framework.

If the system is open (𝐾 ≠ ∅), a sufficient condition is given by ∇𝕃, as in Eq. (3.5); let 𝒪 ∈ herm(ℋ) be
a conserved quantity in the corresponding closed system ([𝐻,𝒪] = 0). Then, if 𝒪 satisfies

∇𝕃𝒪 = 0, (9.16)

⟨𝒪⟩ is conserved under the quantum master equation because

𝑑
𝑑𝑡⟨𝒪⟩ = − 𝑖

ℏ tr(𝒪[𝐻, 𝜌])⏟⎵⎵⏟⎵⎵⏟
=0

+ tr(𝒪∇∗
𝕃𝕁(𝜌)) = tr ((∇𝕃𝒪)𝕁(𝜌)). (9.17)

Therefore, we can characterize conservative quantities by two conditions, [𝐻,𝒪] = 0 and ∇𝕃𝒪 = 0. The most
trivial conserved quantity is the identity 𝐼ℋ, which indicates the conservation of the trace.
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9.2 Thermodynamics

9.2.1 Local equilibrium assumption

The quantum master equation describes dynamics influenced by environments that relax much faster than the

bath; thus, it assumes some thermodynamic properties of the environments. We incorporate such an assumption

via the local detailed balance [16, 153]

𝑘B ln
𝛾𝑘
𝛾−𝑘

= 𝑠𝑘, (9.18)

where 𝑠𝑘 indicates the entropy change through jump 𝑘 in the bath that mediates the jump (𝑠−𝑘 = −𝑠𝑘). Equa-
tion (9.18) corresponds to the local detailed balance in MJPs (6.21) and CRNs (7.31).

For example, let 𝑘 involve energy release 𝜔𝑘 with a heat bath at inverse temperature 𝛽𝑘. Then, Eq. (9.18)
reads

ln
𝛾𝑘
𝛾−𝑘

= 𝛽𝑘𝜔𝑘. (9.19)

Now, we further assume the thermodynamic consistency relation [13, 16]

[𝐿𝑘, 𝐻] = 𝜔𝑘𝐿𝑘. (9.20)

If every jump is mediated by a unique heat bath at inverse temperature 𝛽 and the above two conditions are

satisfied, we say that the system is detailed balanced. For such systems, we can show that

𝕁(𝜌eq) = 0, (9.21)

where 𝜌eq = 𝑒−𝛽𝐻/𝑍𝛽 and 𝑍𝛽 = tr(𝑒−𝛽𝐻). That is, Eqs. (9.19) and (9.20) are sufficient for the quantum master

equation to have the Gibbs state as a detailed balanced steady state (note that [𝐻, 𝜌eq] = 0).
Equation (9.21) is equivalent to 𝐽𝑘(𝜌eq) = 0, which can be confirmed as follows: First, we have

𝐽𝑘(𝜌eq) =
𝛾𝑘
2𝑍𝛽

(𝐿𝑘𝑒−𝛽𝐻 − 𝑒−𝛽𝜔𝑘𝑒−𝛽𝐻𝐿𝑘).

We can also show that the commutation relation (9.20) leads to 𝐿𝑘𝐻𝑛 = (𝐻+𝜔𝑘)𝑛𝐿𝑘: for 𝑛 = 1, it immediately
follows from the commutation relation. Assume 𝐿𝑘𝐻𝑛 = (𝐻 + 𝜔𝑘)𝑛𝐿𝑘 for certain 𝑛 > 1. Then, we get

𝐿𝑘𝐻𝑛+1 = (𝐻 + 𝜔𝑘)𝑛𝐿𝑘𝐻 = (𝐻 + 𝜔𝑘)𝑛(𝐻 + 𝜔𝑘)𝐿𝑘 = (𝐻 + 𝜔𝑘)𝑛+1𝐿𝑘.

By the mathematical induction, 𝐿𝑘𝐻𝑛 = (𝐻+𝜔𝑘)𝑛𝐿𝑘 is proved. Applying this result to each term of the Taylor

expansion of 𝑒−𝛽𝐻, we obtain

𝐿𝑘𝑒−𝛽𝐻 =
∞
∑
𝑛=0

(−𝛽)𝑛

𝑛! 𝐿𝑘𝐻𝑛 =
∞
∑
𝑛=0

(−𝛽)𝑛

𝑛! (𝐻 + 𝜔𝑘)𝑛𝐿𝑘 = 𝑒−𝛽(𝐻+𝜔𝑘)𝐿𝑘.

Therefore, we see 𝐽𝑘(𝜌eq) = 0, which implies Eq. (9.21).

9.2.2 Entropy production

The system entropy is defined by the von Neumann entropy [13]

𝑆(𝜌) = −𝑘B tr(𝜌 ln 𝜌). (9.22)

Its time derivative is given as

𝑑𝑆
𝑑𝑡 = −𝑘B tr (

𝑑𝜌
𝑑𝑡 ln 𝜌) − 𝑘B tr (

𝑑𝜌
𝑑𝑡 )⏟⎵⏟⎵⏟

=0

= 𝑘B tr (
𝑖
ℏ[𝐻, 𝜌] ln 𝜌)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

=0

− 𝑘B tr ((∇∗
𝕃𝕁(𝜌)) ln 𝜌)

= −𝑘B⟨𝛁∗
𝕃𝕁(𝜌), ln 𝜌⟩ = −𝑘B⟨𝕁(𝜌), 𝛁𝕃 ln 𝜌⟩ (9.23)
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where we used (𝑑/𝑑𝑡) tr(𝜌) = 0 in the second equality and the cyclic property of the trace to obtain the third
line.

On the other hand, the enviromnental entropy change is given by [13, 16, 24]

̇𝑆env = ∑
𝑘∈𝐾

𝑠𝑘(𝛾𝑘 tr(𝐿
†
𝑘𝐿𝑘𝜌) − 𝛾−𝑘 tr(𝐿

†
−𝑘𝐿−𝑘𝜌)), (9.24)

where 𝛾𝑘 tr(𝐿
†
𝑘𝐿𝑘𝜌) and 𝛾−𝑘 tr(𝐿

†
−𝑘𝐿−𝑘𝜌) represent the frequency of the jumps. This can be rewritten as

̇𝑆env = ⟨𝕁(𝜌), 𝔽∘⟩, (9.25)

where we define 𝔽∘ ∈ anti(𝔥 ⊗ℋ) by

𝔽∘ ≔ 𝑘B[𝕃, lnΓ ⊗ 𝐼ℋ], (9.26)

which is decomposed as

𝔽∘ =⨁
𝑘∈𝐾

𝔽∘𝑘, 𝔽∘𝑘 ≔ 𝑘B[𝕃𝑘, lnΓ𝑘 ⊗ 𝐼ℋ]. (9.27)

Equation (9.25) is proved in three steps: first, we confirm ⟨𝕁(𝜌), 𝔽∘⟩ = ∑𝑘∈𝐾 tr(𝕁
†
𝑘(𝜌)𝔽

∘
𝑘). Next, we have

𝔽∘𝑘 = 𝑘B[ (
0 𝐿−𝑘
𝐿𝑘 0 ) (

ln
𝛾𝑘
2
𝐼ℋ 0

0 ln
𝛾−𝑘
2
𝐼ℋ
) ] = 𝑘B ln

𝛾𝑘
𝛾−𝑘

( 0 −𝐿−𝑘
𝐿𝑘 0 ) = 𝑠𝑘 (

0 −𝐿−𝑘
𝐿𝑘 0 ) . (9.28)

In addition, we get

tr (𝕁†𝑘(𝜌) (
0 −𝐿−𝑘
𝐿𝑘 0 ) ) = tr (𝐽𝑘(𝜌)𝐿−𝑘 − 𝐽−𝑘(𝜌)𝐿𝑘)

= 1
2 tr ((𝛾𝑘𝐿𝑘𝜌 − 𝛾−𝑘𝜌𝐿𝑘)𝐿−𝑘 − (𝛾−𝑘𝐿−𝑘𝜌 − 𝛾𝑘𝜌𝐿−𝑘)𝐿𝑘)

= 1
2 tr (𝛾𝑘𝐿𝑘𝜌𝐿

†
𝑘 − 𝛾−𝑘𝜌𝐿

†
−𝑘𝐿−𝑘 − 𝛾−𝑘𝐿−𝑘𝜌𝐿

†
−𝑘 + 𝛾𝑘𝜌𝐿

†
𝑘𝐿𝑘)

= 𝛾𝑘 tr(𝐿
†
𝑘𝐿𝑘𝜌) − 𝛾−𝑘 tr(𝐿

†
−𝑘𝐿−𝑘𝜌).

Combining these relations, we see that Eq. (9.25) is valid.

Combining Eqs. (9.23) and (9.25), we can provide the EPR as

Σ̇(𝜌) = 𝑑𝑆
𝑑𝑡 +

̇𝑆env = ⟨𝕁(𝜌), 𝔽∘ − 𝑘B∇𝕃 ln 𝜌⟩. (9.29)

Therefore, by defining the thermodynamic force as

𝔽(𝜌) ≔ 𝔽∘ − 𝑘B∇𝕃 ln 𝜌, (9.30)

we obtain the quantum counterpart of Eq. (3.7) as [20]

Σ̇(𝜌) = ⟨𝕁(𝜌), 𝔽(𝜌)⟩. (9.31)

The thermodynamic force is also expressed as

𝔽(𝜌) = 𝑘B[𝕃, ln(Γ ⊗ 𝜌)] (9.32)

because

𝔽∘ − 𝑘B∇𝕃 ln 𝜌 = 𝑘B[𝕃, lnΓ ⊗ 𝐼ℋ] − 𝑘B[𝐼𝔥 ⊗ ln 𝜌, 𝕃] = 𝑘B[𝕃, lnΓ ⊗ 𝐼ℋ + 𝐼𝔥 ⊗ ln 𝜌] = 𝑘B[𝕃, ln(Γ ⊗ 𝜌)],

where in the last equality, we used the property of the log function

ln(𝑋1 ⊗𝑋2) = ln𝑋1 ⊗ 𝐼ℋ2 + 𝐼ℋ1 ⊗ ln𝑋2 (9.33)
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for two Hilbert spaces ℋ1 and ℋ2 and 𝑋𝑖 ∈ herm(ℋ𝑖) (𝑖 = 1, 2). Again, the thermodynamic force operator
can be disassembled as

𝔽(𝜌) =⨁
𝑘∈𝐾

𝔽𝑘(𝜌), 𝔽𝑘(𝜌) = 𝑘B[𝕃𝑘, ln(Γ𝑘 ⊗ 𝜌)] = ( 0 𝐹−𝑘(𝜌)
𝐹𝑘(𝜌) 0 ) , 𝐹𝑘(𝜌) = 𝑘B ln

𝛾𝑘
𝛾−𝑘

𝐿𝑘 + 𝑘B[𝐿𝑘, ln 𝜌],

(9.34)

where the last equality is proved by using Eqs. (9.12) and (9.28).

Due to the separable structure of the operators, we can define partial EPRs by

Σ̇𝑘(𝜌) ≔ ⟨𝕁𝑘(𝜌), 𝔽𝑘(𝜌)⟩. (9.35)

The non-negativity of the total and partial EPRs will be proved simultaneously in the next section.

9.2.3 Force-current structure

Let us consider association between the irreversible dynamics and thermodynamics. To connect the thermody-

namic force operator 𝔽(𝜌) and the current operator 𝕁(𝜌), we introduce a super-operator; letℋ′ be an arbitrary

Hilbert space and 𝐺 > 0 a positive bounded Hermitian operator. We defineℳ𝐺 ∶ opr(ℋ′) → opr(ℋ′) by

ℳ𝐺(𝑋) =
1
𝑘B

∫
1

0
𝐺𝑠𝑋𝐺1−𝑠𝑑𝑠. (9.36)

It does not change the hermiticity of the argument; e.g., ℳ𝐺(𝑋) is anti-Hermitian if 𝑋 is. If ℋ′ is finite-

dimensional and 𝐺 has the spectral decomposition

𝐺 = ∑
𝑖
𝑔𝑖|𝑖⟩⟨𝑖|, (9.37)

the super-operator is explicitly given by

ℳ𝐺(𝑋) =
1
𝑘B

∑
𝑖,𝑗
Λ(𝑔𝑖, 𝑔𝑗)⟨𝑖|𝑋|𝑗⟩|𝑖⟩⟨𝑗|, (9.38)

where Λ is the log mean (cf. Eq. (6.30)). This is because

⟨𝑖|∫
1

0
𝐺𝑠𝑋𝐺1−𝑠𝑑𝑠|𝑗⟩ = ∫

1

0
𝑔𝑠𝑖 ⟨𝑖|𝑋|𝑗⟩𝑔

1−𝑠
𝑗 𝑑𝑠 = ⟨𝑖|𝑋|𝑗⟩𝑔𝑗∫

1

0
(
𝑔𝑖
𝑔𝑗
)
𝑠
𝑑𝑠

= ⟨𝑖|𝑋|𝑗⟩𝑔𝑗
1

ln(𝑔𝑖/𝑔𝑗)
[𝑒𝑠 ln(𝑔𝑖/𝑔𝑗)]

𝑠=1

𝑠=0
=

𝑔𝑖 − 𝑔𝑗
ln(𝑔𝑖/𝑔𝑗)

⟨𝑖|𝑋|𝑗⟩.

Therefore,ℳ can be understood as a generalization of the multiplication of log mean.

In fact,ℳ maps 𝔽(𝜌) to 𝕁(𝜌) if we chooseℋ′ = 𝔥 ⊗ℋ and 𝐺 = Γ⊗ 𝜌: We have

ℳΓ⊗𝜌(𝔽(𝜌)) = 𝕁(𝜌). (9.39)

This provides the quantum counterpart of the Onsager relation (3.8). It is proved by referring to expressions (9.7)

and (9.32). Given them, we realize that it is sufficient to prove

ℳ𝐺(𝑘B[𝐾, ln𝐺]) = [𝐾, 𝐺] (9.40)

for every 𝐺 > 0 and 𝐾 ∈ opr(ℋ′). Since 𝐺 is positive, there exists 𝑄 such that 𝐺 = 𝑒𝑄. Because of the general
relation

𝑑
𝑑𝑠𝑒

𝑠𝑄𝐾𝑒(1−𝑠)𝑄 = 𝑒𝑠𝑄𝑄𝐾𝑒(1−𝑠)𝑄 − 𝑒𝑠𝑄𝐾𝑄𝑒(1−𝑠)𝑄 = −𝑒𝑠𝑄[𝐾, 𝑄]𝑒(1−𝑠)𝑄

we can prove the desired equality as

ℳ𝐺(𝑘B[𝐾, ln𝐺]) = −∫
1

0
𝑒𝑠𝑄[𝐾, 𝑄]𝑒(1−𝑠)𝑄𝑑𝑠 = −∫

1

0

𝑑
𝑑𝑠𝑒

𝑠𝑄𝐾𝑒(1−𝑠)𝑄𝑑𝑠 = 𝐾𝑒𝑄 − 𝑒𝑄𝐾 = [𝐾, 𝐺].
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The separability shown in Eqs. (9.8) and (9.34) also implies the relation

𝕁𝑘(𝜌) = ℳΓ𝑘⊗𝜌(𝔽𝑘(𝜌)) (9.41)

for each 𝑘.
Let us callℳΓ⊗𝜌 the Onsager super-operator. It can be shown to be symmetric and positive definite; thus,

it provides an inner product by

⟨𝔽′, 𝔽″⟩𝜌 ≔ ⟨𝔽′,ℳΓ⊗𝜌(𝔽″)⟩ (9.42)

as in Eq. (3.9). We can also obtain a norm,

‖𝔽′‖𝜌 ≔√⟨𝔽′,ℳΓ⊗𝜌(𝔽′)⟩, (9.43)

and a formula corresponding to Eq. (3.10),

Σ̇(𝜌) = ‖𝔽(𝜌)‖2𝜌, (9.44)

which shows the non-negativity of the EPR. Similarly, for 𝕗′, 𝕗″ ∈ anti(ℂ2 ⊗ℋ), we can define

⟨𝕗′, 𝕗″⟩(𝑘)𝜌 ≔ ⟨𝕗′,ℳΓ𝑘⊗𝜌(𝕗″)⟩, ‖𝕗′‖(𝑘)𝜌 ≔√⟨𝕗′, 𝕗′⟩(𝑘)𝜌 (9.45)

to obtain

Σ̇𝑘(𝜌) = (‖𝔽𝑘(𝜌)‖
(𝑘)
𝜌 )

2
, (9.46)

which shows the non-negativity of the partial EPRs. They sum to the total EPR because

∑
𝑘∈𝐾

Σ̇𝑘(𝜌) = ∑
𝑘∈𝐾

⟨𝕁𝑘(𝜌), 𝔽𝑘(𝜌)⟩ = ⟨𝕁(𝜌), 𝔽(𝜌)⟩ = Σ̇(𝜌),

where we used the separable form of 𝕁(𝜌) and 𝔽(𝜌) to get the second equality.
The symmetric property ofℳ𝐺 is proved generally as

⟨𝑋,ℳ𝐺(𝑋 ′)⟩

= 1
𝑘B

∫
1

0
tr(𝑋†𝐺𝑠𝑋 ′𝐺1−𝑠)𝑑𝑠 = 1

𝑘B
∫

1

0
tr(𝐺1−𝑠𝑋†𝐺𝑠𝑋 ′)𝑑𝑠 = 1

𝑘B
∫

1

0
tr ((𝐺𝑠𝑋𝐺1−𝑠)†𝑋 ′)𝑑𝑠

= ⟨ℳ𝐺(𝑋), 𝑋 ′⟩.

That is, we haveℳ∗
𝐺 = ℳ𝐺. We can also show the positive definiteness by using the positive square root 𝐹 of

𝐺, which satisfies 𝐹2 = 𝐺, 𝐹† = 𝐹, and 𝐹 > 0 [154]. Ifℋ is finite dimensional, it can be constructed as

𝐹 = ∑
𝑖
√𝑔𝑖|𝑖⟩⟨𝑖|.

Then, we get

⟨𝑋,ℳ𝐺(𝑋)⟩ =
1
𝑘B

∫
1

0
tr(𝑋†(𝐹2)𝑠𝑋(𝐹2)1−𝑠)𝑑𝑠

= 1
𝑘B

∫
1

0
tr([𝐹𝑠𝑋𝐹1−𝑠]†𝐹𝑠𝑋𝐹1−𝑠)𝑑𝑠 = 1

𝑘B
∫

1

0
|𝐹𝑠𝑋𝐹1−𝑠|2𝑑𝑠 ≥ 0,

where we used the cyclic property to obtain the second line.
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9.2.4 Conservativeness and detailed balance

If we consider a detailed balanced system (cf. Sec. 9.2.1), the thermodynamic force becomes

𝔽(𝜌) = −∇𝕃𝜙(𝜌), 𝜙(𝜌) ≔ 𝑘B(ln 𝜌 + 𝛽𝐻). (9.47)

That is, detailed balanced systems have conservative forces. On the other hand, if there are multiple baths at

different temperatures, the force is no longer conservative.

Equation (9.47) is proved as follows: first, we have

𝑘B ln
𝛾𝑘
𝛾−𝑘

𝐿𝑘 = 𝑘B𝛽𝜔𝑘𝐿𝑘 = 𝑘B𝛽[𝐿𝑘, 𝐻].

Thus, from Eq. (9.34), we see

𝐹𝑘(𝜌) = −[𝜙(𝜌), 𝐿𝑘].

On the other hand, Eq. (9.12) shows

∇𝕃𝑘𝜙(𝜌) = ( 0 [𝜙(𝜌), 𝐿−𝑘]
[𝜙(𝜌), 𝐿𝑘] 0 ) .

Therefore, considering these equations and Eq. (9.34), we find Eq. (9.47). If the inverse temperature depends

on bath, we only have potentials defined for each jump 𝜙𝑘(𝜌) = 𝑘B(ln 𝜌 + 𝛽𝑘𝐻) with the inverse temperature
𝛽𝑘 of the bath mediating jump 𝑘 and

𝐹𝑘(𝜌) = −[𝜙𝑘(𝜌), 𝐿𝑘],

which does not lead to a conservative thermodynamic force.

As the Onsager super-operator is positive definite, the EPR vanishes when 𝔽(𝜌) = 0, or equivalently, de-
tailed balance 𝕁(𝜌) = 0 holds. As mentioned, this occurs in a detailed balanced system when 𝜌 is the Gibbs
state 𝜌eq, as is evident from the expression (9.47). However, it is not the unique state where the EPR vanishes.

If {𝑄𝑖} are the conservation laws, i.e., [𝐻, 𝑄𝑖] = 0 and ∇𝕃𝑄𝑖 = 0 holds, then

𝜌𝛽,𝝀 ≔
𝑒−𝛽𝐻−∑𝑖 𝜆𝑖𝑄𝑖

𝑍𝛽,𝝀
with 𝜆𝑖 ∈ ℝ, 𝑍𝛽,𝝀 ≔ tr(𝑒−𝛽𝐻−∑𝑖 𝜆𝑖𝑄𝑖) (9.48)

satisfies 𝔽(𝜌𝛽,𝝀) = 0 and 𝕁(𝜌𝛽,𝝀) = 0. Moreover, since 𝜌𝛽,𝝀 commutes with 𝐻, it becomes a steady state.

Equation (9.48) provides the so-called generalized Gibbs ensemble [155]. It is easily proved by using Eq. (9.47)

as

𝔽(𝜌𝛽,𝝀) = −𝑘B∇𝕃(ln 𝜌𝛽,𝝀 + 𝛽𝐻) = −𝑘B∇𝕃(−∑
𝑖
𝜆𝑖𝑄𝑖 − ln𝑍𝛽,𝝀𝐼ℋ) = 0,

where we used ∇𝕃𝑄𝑖 = 0 and ∇𝕃𝐼ℋ = 0. If we count 𝑄 = 𝐼ℋ as a conservation law, the generalized Gibbs

ensemble is written as

𝜌𝛽,𝝀,𝜇 = 𝑒−𝛽𝐻−∑𝑖 𝜆𝑖𝑄𝑖−𝜇𝑄 = 𝑒−𝛽𝐻−∑𝑖 𝜆𝑖𝑄𝑖−𝜇 (9.49)

with 𝜇 = ln𝑍𝛽,𝝀. When the system starts from 𝜌(0), it would be associated with 𝜌𝛽,𝝀 such that

𝑞𝑖 ≔ tr(𝑄𝑖𝜌(0)) = tr(𝑄𝑖𝜌𝛽,𝝀). (9.50)

Now, let us compare Eqs. (3.11) and (9.30); then, we realize that assumption C1 of Sec. 3.3 is satisfied since

𝔽(𝜌) = 𝔽∘ − ∇𝕃𝜑(𝜌) (9.51)

with

𝜑(𝜌) = 𝑘B ln 𝜌. (9.52)
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Therefore, Eq. (3.12) in assumption C2 reads

tr (𝑄𝑖𝑒
(𝜓−∑𝑖 𝜆𝑖𝑄𝑖−𝜇)/𝑘B) = 𝑞𝑖, tr (𝑒(𝜓−∑𝑖 𝜆𝑖𝑄𝑖−𝜇)/𝑘B) = 1, (9.53)

where the latter equation corresponds to 𝑄 = 𝐼ℋ and determines 𝜇 = 𝑘−1B ln tr(𝑒(𝜓−∑𝑖 𝜆𝑖𝑄𝑖)/𝑘B). That is, as-
sumption C2 implies the existence of 𝝀 such that 𝑞𝑖 = tr(𝑄𝑖𝜌𝛽,𝝀) for any 𝑞𝑖 and 𝛽.

If we assume the existence of such 𝝀, the general argument in Sec. 3.3 then reveals the equivalence between
the two statements:

(1) There exists a potential 𝜓 ∈ herm(ℋ) such that 𝔽∘ = −∇𝕃𝜓.

(2) For any state 𝜌, there exists a detailed balanced state 𝜌𝛽,𝜆 such that tr(𝑄𝑖𝜌) = tr(𝑄𝑖𝜌𝛽,𝜆) for all 𝑖.

We define a system to be conservative if it satisfies the first condition. Considering Eqs. (9.12) and (9.28), we

find that the first condition is equivalent to the existence of 𝜓 such that

𝑠𝑘𝐿𝑘 = [𝜓, 𝐿𝑘]. (9.54)

In fact, this condition is satisfied with 𝜓 = 𝑘B𝛽𝐻 when the system is detailed balanced.

9.2.5 Cycles

The properties of the cycle as defined by the kernel of ∇∗
𝕃 are yet to be well studied, as in the hydrodynamic

case. If we assume that a cyclic operator has the same form as the thermodynamic force and current operators,

it reads

ℂ = ⊕𝑘∈𝐾ℂ𝑘, ℂ𝑘 = ( 0 𝐶−𝑘
𝐶𝑘 0 ) , 𝐶−𝑘 = −𝐶†

𝑘 ∈ opr(ℋ). (9.55)

For this quantity, ∇∗
𝕃ℂ = 0 implies

∑
𝑘∈𝐾

([𝐶−𝑘, 𝐿𝑘] + [𝐶𝑘, 𝐿−𝑘]) = 0. (9.56)

9.2.6 Classical limit

The quantum master equation turns into a classical master equation under some conditions. First, we assume

the Hamiltonian 𝐻 is nondegenerate and eigendecomposed as

𝐻 = ∑
𝑛
𝜖𝑛|𝑛⟩⟨𝑛|. (9.57)

The orthonormal basis is assumed to be static. Next, we assume 𝜌 commutes with 𝐻,

𝜌 = ∑
𝑛
𝑝𝑛|𝑛⟩⟨𝑛|, (9.58)

which is the “most classical” assumption. Finally, the consistency relation (9.20) is supposed to be satisfied;

then, 𝐿†𝑘𝐿𝑘 commutes with 𝐻 because

[𝐿†𝑘𝐿𝑘, 𝐻] = 𝐿†𝑘[𝐿𝑘, 𝐻] + [𝐿†𝑘, 𝐻]𝐿𝑘 = 𝜔𝑘𝐿
†
𝑘𝐿𝑘 − [𝐿𝑘, 𝐻]†𝐿𝑘 = 𝜔𝑘𝐿

†
𝑘𝐿𝑘 − 𝜔𝑘𝐿

†
𝑘𝐿𝑘 = 0. (9.59)

Similarly, we get

[𝐿𝑘𝜌𝐿
†
𝑘, 𝐻] = 𝐿𝑘𝜌[𝐿

†
𝑘, 𝐻] + [𝐿𝑘, 𝐻]𝜌𝐿

†
𝑘 = −𝜔𝑘𝐿𝑘𝜌𝐿

†
𝑘 + 𝜔𝑘𝐿𝑘𝜌𝐿

†
𝑘 = 0, (9.60)

where we used the identity [𝐴𝐵𝐶,𝐷] = 𝐴𝐵[𝐶,𝐷] + 𝐴[𝐵, 𝐷]𝐶 + [𝐴,𝐷]𝐵𝐶. Therefore, because we assumed 𝐻
is nondegenerate, 𝐿†𝑘𝐿𝑘 and 𝐿𝑘𝜌𝐿

†
𝑘 are diagonalized by the orthonormal basis {|𝑛⟩}.
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Now, the matrix elements of the quantum master equation read

⟨𝑚|
𝑑𝜌
𝑑𝑡 |𝑙⟩ = ∑

𝑛
⟨𝑚|(

𝑑𝑝𝑛
𝑑𝑡 |𝑛⟩⟨𝑛| + 𝑝𝑛

𝑑|𝑛⟩
𝑑𝑡⏟
=0

⟨𝑛| + 𝑝𝑛|𝑛⟩
𝑑⟨𝑛|
𝑑𝑡⏟
=0

)|𝑙⟩ = 𝛿𝑚𝑙
𝑑𝑝𝑚
𝑑𝑡 ,

⟨𝑚|𝒟(𝜌)|𝑙⟩ = ∑
𝑘∈𝐾all

𝛾𝑘⟨𝑚|(𝐿𝑘𝜌𝐿
†
𝑘 −

1
2{𝐿

†
𝑘𝐿𝑘, 𝜌})|𝑙⟩

= 𝛿𝑚𝑙 ∑
𝑘∈𝐾all

𝛾𝑘(∑
𝑛
𝑝𝑛|⟨𝑚|𝐿𝑘|𝑛⟩|2 − 𝑝𝑚⟨𝑚|𝐿

†
𝑘𝐿𝑘|𝑚⟩)

= 𝛿𝑚𝑙 ∑
𝑘∈𝐾all

𝛾𝑘(∑
𝑛
𝑝𝑛|⟨𝑚|𝐿𝑘|𝑛⟩|2 −∑

𝑛
𝑝𝑚|⟨𝑛|𝐿𝑘|𝑚⟩|2),

where we used the fact that 𝐿𝑘𝜌𝐿
†
𝑘 and 𝐿

†
𝑘𝐿𝑘 are diagonalized by {|𝑛⟩} in the second line and inserted 𝐼ℋ =

∑𝑛 |𝑛⟩⟨𝑛| in the last line. Therefore, the quantum master equation is equivalent to the classical master equation

𝑑𝑝𝑚
𝑑𝑡 = ∑

𝑛(≠𝑚)
∑

𝑘∈𝐾all

(𝑅(𝑘)𝑚𝑛𝑝𝑛 − 𝑅(𝑘)𝑛𝑚𝑝𝑚), (9.61)

where the transition rates are given by

𝑅(𝑘)𝑚𝑛 = 𝛾𝑘|⟨𝑚|𝐿𝑘|𝑛⟩|2. (9.62)

To obtain the classical local detailed balance (6.21), the backward process of 𝑒 = (𝑛 → 𝑚; 𝑘), whose transition
rate reads 𝑅(𝑘)𝑚𝑛, should be −𝑒 = (𝑚 → 𝑛;−𝑘). Then, we obtain

𝑘B ln
𝑅(𝑘)𝑚𝑛

𝑅(−𝑘)𝑛𝑚
= 𝑘B ln

𝛾𝑘|⟨𝑚|𝐿𝑘|𝑛⟩|2

𝛾−𝑘|⟨𝑚|𝐿𝑘|𝑛⟩|2
= 𝑠𝑘, (9.63)

where the last equality comes from Eq. (9.18).

9.3 Housekeeping-excess decomposition

Following the general procedure, the housekeeping and the excess EPR are defined for the quantum master

equation as [21]

Σ̇hk(𝜌) ≔ inf
𝔽′∈𝒞

‖𝔽(𝜌) − 𝔽′‖2𝜌, (9.64)

Σ̇ex(𝜌) ≔ inf
𝔽′∈𝒞⟂

‖𝔽(𝜌) − 𝔽′‖2𝜌 (9.65)

= inf
𝔽′∈ℱ

‖𝔽′‖2𝜌 s.t. ∇∗
𝕃ℳΓ⊗𝜌(𝔽′) = ∇∗

𝕃𝕁(𝜌), (9.66)

where the conservative subspace 𝒞 and its orthogonal complement 𝒞⟂ are given by

𝒞 ≔ {−∇𝕃𝜙 ∣ 𝜙 ∈ herm(ℋ)}, (9.67)

𝒞⟂ = {𝔽′ ∈ anti(𝔥 ⊗ℋ) ∣ ∇∗
𝕃ℳΓ⊗𝜌(𝔽′) = 0}. (9.68)

The housekeeping EPR vanishes when the system is conservative; i.e., 𝔽∘ is in 𝒞, which implies 𝔽(𝜌) ∈ 𝒞.
The orthogonal complement is derived as follows: for an arbitrary 𝜙 ∈ herm(ℋ), 𝔽′ ∈ 𝒞⟂ must satisfy

⟨𝔽′, −∇𝕃𝜙⟩𝜌 = −⟨∇∗
𝕃ℳΓ⊗𝜌(𝔽′), 𝜙⟩ = 0.

When 𝔽′ is anti-Hermitian, ∇∗
𝕃ℳΓ⊗𝜌(𝔽′) becomes Hermitian. Thus, ∇∗

𝕃ℳΓ⊗𝜌(𝔽′) must be the zero operator
for the equality to hold for any Hermitian 𝜙.

If the inverse of the Onsager super-operatorℳ−1
Γ⊗𝜌 is defined, the excess EPR is given by

Σ̇ex(𝜌) = inf
𝕁′∈ℱ

⟨𝕁′,ℳ−1
Γ⊗𝜌(𝕁′)⟩ s.t. ∇∗

𝕃𝕁′ = ∇∗
𝕃𝕁(𝜌). (9.69)
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This representation again suggests the connection between minimum dissipation and the excess EPR.

As discussed generally in Sec. 4.2, there is an optimal potential 𝜙∗ that provides the EPRs as

Σ̇hk(𝜌) = ‖𝔽(𝜌) − (−∇𝕃𝜙∗)‖2𝜌, (9.70)

Σ̇ex(𝜌) = ‖−∇𝕃𝜙∗‖2𝜌. (9.71)

In practice, the potential is obtained by performing the optimizations or directly solving the equation

−∇∗
𝕃ℳΓ⊗𝜌(∇𝕃𝜙) = 𝒟(𝜌). (9.72)

The Hatano–Sasa decomposition can also be defined for open quantum systems (often referred to as the

adiabatic-nonadiabatic decomposition). The HS EPRs are given by [24, 63]

Σ̇hk,HS(𝜌) ≔ ⟨𝕁(𝜌), 𝔽(𝜌ss)⟩, (9.73)

Σ̇ex,HS(𝜌) ≔ ⟨𝕁(𝜌), 𝔽(𝜌) − 𝔽(𝜌ss)⟩. (9.74)

Here, 𝜌ss is a steady state, where we have −(𝑖/ℏ)[𝐻, 𝜌ss] + 𝒟(𝜌ss) = 0. The positivity of this decomposition
is only assured when the steady state satisfies [64]

[𝐿𝑘, Φ] = Δ𝜙𝑘𝐿𝑘, (9.75)

where Φ = − ln 𝜌ss and Δ𝜙𝑘 is a difference between eigenvalues of Φ. This condition indicates that the jump
operators act as creation/annihilation operators regarding the eigenbasis of 𝜌ss. However, this condition is not
always satisfied and the decomposition can fail [64].

9.4 Thermodynamic trade-off relations

9.4.1 Thermodynamic uncertainty relations

The general result provided in Sec. 5.2.1 gives open quantum systems the following inequality [20]

Σ̇ex(𝜌) ≥
|⟨∇∗

𝕃𝕁(𝜌), 𝒪⟩|2

‖∇𝕃𝒪‖2𝜌
(9.76)

for any observable 𝒪 ∈ herm(ℋ). The numerator provides the dissipative part of the time derivative of ⟨𝒪⟩ as

𝑑
𝑑𝑡⟨𝒪⟩ = − 𝑖

ℏ tr([𝐻, 𝜌]𝒪) + tr(𝒪∇∗
𝕃𝕁(𝜌)) = − 𝑖

ℏ tr([𝐻, 𝜌]𝒪) + ⟨∇𝕃𝒪, 𝕁(𝜌)⟩, (9.77)

and coincides with (𝑑/𝑑𝑡)⟨𝒪⟩ if 𝒪 commutes with 𝐻 or 𝜌. As proven later, the denominator is upper bound by
1/𝑘B times the quantity

𝔇𝜌(𝒪) ≔
1
2 tr (𝜌(𝒟

∗(𝒪2) − {𝒪,𝒟∗(𝒪)})), (9.78)

which we term the quantum diffusivity [20]. We will discuss that this quantity can be interpreted as the diffu-

sivity of 𝒪 in the dissipative dynamics. Thus, we obtain the inequality

Σ̇ex(𝜌) ≥ 𝑘B
|⟨∇∗

𝕃𝕁(𝜌), 𝒪⟩|2

𝔇𝜌(𝒪)
(9.79)

and it can be understood as the short-timeTUR in open quantum systems. We note that strictly speaking, proving

the inequality

‖∇𝕃𝒪‖2𝜌 ≤
1
𝑘B
𝔇𝜌(𝒪) (9.80)

requires the Hilbert space to be finte-dimensional because we use the formula (9.38).
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Moreover, in a similar way, we can show the TUR for the partial EPRs

Σ̇𝑘(𝜌) ≥ 𝑘B
|⟨∇∗

𝕃𝑘𝕁𝑘(𝜌), 𝒪⟩|
2

𝔇(𝑘)
𝜌 (𝒪)

, (9.81)

where

𝔇(𝑘)
𝜌 (𝒪) ≔ 1

2 tr (𝜌(𝒟
∗
𝑘(𝒪2) − {𝒪,𝒟∗

𝑘(𝒪)})). (9.82)

It is proved once we admit the inequality

(‖∇𝕃𝑘𝒪‖
(𝑘)
𝜌 )

2
≤ 1
𝑘B
𝔇(𝑘)
𝜌 (𝒪). (9.83)

Then, the Cauchy–Schwarz inequality proves the inequality as

Σ̇𝑘(𝜌)(‖∇𝕃𝑘𝒪‖
(𝑘)
𝜌 )

2
= (‖𝔽𝑘(𝜌)‖

(𝑘)
𝜌 )

2
(‖∇𝕃𝑘𝒪‖

(𝑘)
𝜌 )

2
≥ ||⟨𝔽𝑘(𝜌), ∇𝕃𝑘𝒪⟩

(𝑘)
𝜌 ||

2
= |⟨∇∗

𝕃𝑘𝕁𝑘(𝜌), 𝒪⟩|
2.

9.4.2 Quantum diffusivity

We interpret the quantum diffusivity 𝔇𝜌(𝒪) as a diffusivity because it leads to the classical diffusivity (6.78)
when 𝒪 commutes with 𝜌;

𝔇𝜌(𝑋) =
1
2 ∑
𝑛,𝑚(≠𝑛)

∑
𝑘∈𝐾all

(𝑅(𝑘)𝑚𝑛𝑝𝑛 + 𝑅(−𝑘)𝑛𝑚 𝑝𝑚)(𝒪𝑚 − 𝒪𝑛)2, (9.84)

where 𝒪𝑛 ≔ ⟨𝑛|𝒪|𝑛⟩ are the eigenvalues of 𝒪 and 𝑅(𝑘)𝑚𝑛 ≔ 𝛾𝑘|⟨𝑚|𝐿𝑘|𝑛⟩|2 for 𝑛 ≠ 𝑚, which can be interpreted
as the transition rates in the classical limit considered in Sec. 9.2.6. From Eq. (9.84), we find the quantum

diffusivity can provide the classical diffusivity defined in Eq. (6.78) in the classical limit. On the other hand, it

is defined regardless of the classicality, so we can consider it as a quantum extension of the classical diffusivity.

This is also supported by the fact that the quantity becomes the counterpart of the classical diffusivity in the

TUR (9.79) (cf. Eq. (6.79)).

Let us first prove Eq. (9.84). By using the orthonormal basis {|𝑛⟩} that simultaneously diagonalizes 𝜌 =
∑𝑛 𝑝𝑛|𝑛⟩⟨𝑛| and 𝒪 = ∑𝑛𝒪𝑛|𝑛⟩⟨𝑛|, the definition (9.82) is rewritten as

𝔇(𝑘)
𝜌 (𝒪) = 1

2 ∑𝑛,𝑚
𝑝𝑛(𝒪2

𝑚 − 2𝒪𝑛𝒪𝑚)⟨𝑛|𝒟∗
𝑘(|𝑚⟩⟨𝑚|)|𝑛⟩.

From the identity (9.4), which can be stated as∑𝑚𝒟∗
𝑘(|𝑚⟩⟨𝑚|) = 0, we find

∑
𝑛,𝑚

𝑝𝑛𝒪2
𝑛⟨𝑛|𝒟∗

𝑘(|𝑚⟩⟨𝑚|)|𝑛⟩ = 0.

Thus, we obtain

𝔇(𝑘)
𝜌 (𝒪) = 1

2 ∑𝑛,𝑚
𝑝𝑛(𝒪2

𝑚 − 2𝒪𝑛𝒪𝑚 + 𝒪2
𝑛)⟨𝑛|𝒟∗

𝑘(|𝑚⟩⟨𝑚|)|𝑛⟩ =
1
2 ∑
𝑛,𝑚(≠𝑛)

𝑝𝑛(𝒪𝑚 − 𝒪𝑛)2⟨𝑛|𝒟∗
𝑘(|𝑚⟩⟨𝑚|)|𝑛⟩.

Moreover, when 𝑚 ≠ 𝑛, we get

⟨𝑛|𝒟∗
𝑘(|𝑚⟩⟨𝑚|)|𝑛⟩ = 𝛾𝑘(|⟨𝑚|𝐿𝑘|𝑛⟩|2 − 𝛿𝑛𝑚⟨𝑛|𝐿

†
𝑘𝐿𝑘|𝑛⟩) + 𝛾−𝑘(|⟨𝑚|𝐿−𝑘|𝑛⟩|2 − 𝛿𝑛𝑚⟨𝑛|𝐿

†
−𝑘𝐿−𝑘|𝑛⟩)

= 𝑅(𝑘)𝑚𝑛 + 𝑅(−𝑘)𝑚𝑛 .

By substituting it to the above expression, we find

𝔇(𝑘)
𝜌 (𝒪) = 1

2 ∑
𝑛,𝑚(≠𝑛)

𝑝𝑛(𝒪𝑚 − 𝒪𝑛)2(𝑅
(𝑘)
𝑚𝑛 + 𝑅(−𝑘)𝑚𝑛 ).
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Rearranging terms soon leads to Eq. (9.84).

Then, two inequalities remain unproven: Eqs. (9.80) and (9.83). We note that Eq. (9.80) is derived from

Eq. (9.83) because we have

∑
𝑘
(‖∇𝕃𝒪‖

(𝑘)
𝜌 )

2
= ‖∇𝕃𝒪‖2𝜌,

which is easily seen from the separable structure of ∇𝕃𝒪 (cf. Sec. 9.2.3), and

𝔇𝜌(𝒪) = ∑
𝑘∈𝐾

𝔇(𝑘)
𝜌 (𝒪),

which is obvious from the linearlity of the trace and anti-commutator and the definition of𝒟∗
𝑘.

Proving Eq. (9.82) is accomplished by rewriting

𝔇(𝑘)
𝜌 (𝒪) = ⟨∇𝕃𝑘𝒪,𝒜Γ𝑘⊗𝜌(∇𝕃𝑘𝒪)⟩, (9.85)

where 𝒜 is defined by

𝒜𝐺(𝑋) ≔
𝐺𝑋 + 𝑋𝐺

2 . (9.86)

With the eigendecomposition of 𝐺, it is given by

𝒜𝐺(𝑋) = ∑
𝑖,𝑗

𝑔𝑖 + 𝑔𝑗
2 ⟨𝑖|𝑋|𝑗⟩|𝑖⟩⟨𝑗|. (9.87)

We can prove ⟨𝑋,ℳ𝐺(𝑋)⟩ ≤ 𝑘−1B ⟨𝑋,𝒜𝐺(𝑋)⟩ by

⟨𝑋,ℳ𝐺(𝑋)⟩ =
1
𝑘B

∑
𝑖,𝑗
Λ(𝑔𝑖, 𝑔𝑗)|⟨𝑖|𝑋|𝑗⟩|2 ≤

1
𝑘B

∑
𝑖,𝑗

𝑔𝑖 + 𝑔𝑗
2 |⟨𝑖|𝑋|𝑗⟩|2 = 1

𝑘B
⟨𝑋,𝒜𝐺(𝑋)⟩,

where we used the hierarchy betweenmeans (6.32). Therefore, once we showEq. (9.85), Eq. (9.83) immediately

follows (here, we assumed that Γ𝑘⊗𝜌 has a finite dimension, i.e., that the Hilbert space is finite-dimensional).
Finally, we need to show Eq. (9.85) to derive the TURs (9.79) and (9.81). The right-hand side is rewritten

as

⟨∇𝕃𝑘𝒪,𝒜Γ𝑘⊗𝜌(∇𝕃𝑘𝒪)⟩ =
1
2 tr ((∇𝕃𝑘𝒪)

†(Γ𝑘 ⊗ 𝜌)∇𝕃𝑘𝒪) +
1
2 tr ((∇𝕃𝑘𝒪)

†∇𝕃𝑘𝒪(Γ𝑘 ⊗ 𝜌))

= − tr ((∇𝕃𝑘𝒪)
2(Γ𝑘 ⊗ 𝜌)),

where we used (∇𝕃𝑘𝒪)
† = −∇𝕃𝑘𝒪 since 𝒪 is Hermitian. Further,

−(∇𝕃𝑘𝒪)
2 = −( 0 [𝒪, 𝐿−𝑘]

[𝒪, 𝐿𝑘] 0 )
2

= ([𝐿
†
𝑘, 𝒪][𝒪, 𝐿𝑘] 0

0 [𝐿†−𝑘, 𝒪][𝒪, 𝐿−𝑘]
) ,

thus,

⟨∇𝕃𝑘𝒪,𝒜Γ𝑘⊗𝜌(∇𝕃𝑘𝒪)⟩ =
𝛾𝑘
2 trℋ (𝜌[𝐿†𝑘, 𝒪][𝒪, 𝐿𝑘]) +

𝛾−𝑘
2 trℋ (𝜌[𝐿†−𝑘, 𝒪][𝒪, 𝐿−𝑘]),

where we performed the partial trace regarding 𝔥. A straightforward calculation yields the equalities

[𝐿†𝑘, 𝒪][𝒪, 𝐿𝑘] = 𝐿†𝑘𝒪2𝐿𝑘 −
1
2{𝐿

†
𝑘𝐿𝑘, 𝒪2} − {𝒪, 𝐿†𝑘𝒪𝐿𝑘 −

1
2{𝐿

†
𝑘𝐿𝑘, 𝒪}}

[𝐿†−𝑘, 𝒪][𝒪, 𝐿−𝑘] = 𝐿†−𝑘𝒪2𝐿−𝑘 −
1
2{𝐿

†
−𝑘𝐿−𝑘, 𝒪2} − {𝒪, 𝐿†−𝑘𝒪𝐿−𝑘 −

1
2{𝐿

†
−𝑘𝐿−𝑘, 𝒪}},

which finally reveals

⟨∇𝕃𝑘𝒪,𝒜Γ𝑘⊗𝜌(∇𝕃𝑘𝒪)⟩ =
1
2 trℋ (𝜌(𝒟∗

𝑘(𝒪2) − {𝒪,𝒟∗
𝑘(𝒪)})) = 𝔇(𝑘)

𝜌 (𝒪).
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In addition, we remark that in terms of the quantum diffisivity, the unitary dynamics is “deterministic.” If

we replace the dissipator in Eq. (9.78) with the adjoint of the unitary term, we see that it vanishes:

1
2 tr (𝜌(ℒ

∗
uni(𝒪2) − {𝒪,ℒ∗

uni(𝒪)})) = 0, (9.88)

where

ℒuni(𝜌) ≔ − 𝑖
ℏ[𝐻, 𝜌] and ℒ∗

uni(𝒪) =
𝑖
ℏ[𝐻,𝒪]. (9.89)

This is because we always have

[𝐻,𝒪2] − {𝒪, [𝐻,𝒪]} = 𝐻𝒪2 − 𝒪2𝐻 − (𝒪𝐻𝒪 − 𝒪2𝐻 +𝐻𝒪2 − 𝒪𝐻𝒪) = 0.

Therefore, defining ℒ ≔ ℒuni+𝒟, which gives the quantum master equation as 𝑑𝜌/𝑑𝑡 = ℒ(𝜌), we can rewrite
the quantum diffisivity into

𝔇𝜌(𝒪) =
1
2 tr (𝜌(ℒ

∗(𝒪2) − {𝒪,ℒ∗(𝒪)})). (9.90)

9.4.3 Thermodynamic speed limit

While there have been several studies on the thermodynamic speed limit in open quantum systems [39, 43,

156–158], the Wasserstein distance analogous to the classical definition (6.80) (or more generally, Eq. (5.36))

has been elusive. This is because there is an additional term in the dynamics, namely, the unitary term. One

exception is Ref. [44], where the authors nicely avert this problem by focusing on detailed balanced systems.

Another possible direction is to define formally a quantum analogue of the Benamou–Brenier formula by

neglecting the unitary term as

𝑊(𝜌𝑎, 𝜌𝑏) ≔ inf
𝜌,𝜙√

𝜏∫
𝜏

0
‖−∇𝕃𝜙(𝑡)‖2𝜌(𝑡)𝑑𝑡 (9.91)

with conditions

𝜌(0) = 𝜌𝑎, 𝜌(𝜏) = 𝜌𝑏,
𝑑𝜌
𝑑𝑡 = −∇∗

𝕃ℳΓ⊗𝜌(∇𝕃𝜙(𝑡)). (9.92)

The optimization would be accomplished by manipulating the potential 𝜓 = 𝜙−𝑘B ln 𝜌 that gives 𝔽∘ by−∇𝕃𝜓.

9.5 Examples

We demonstrate our results in open quantum systems by two examples. One is a two-level system coupled to

two heat baths, which is a quantum generalization of the system discussed in Sec. 6.6. In the other example, we

consider a model of superradiant systems, where jumps in several qubits simultaneously occur [159, 160].

9.5.1 Two-level system attached to two heat baths

First, let us illustrate the general framework and the decomposition through a minimal model of the nonequi-

librium quantum system. Consider a two-level system that is equipped with Hamiltonian 𝐻 = ℏ𝜔|𝑒⟩⟨𝑒| and
attached to two heat baths at inverse temperatures 𝛽ℎ and 𝛽ℓ (𝛽ℎ < 𝛽ℓ). The two ways of dissipation induced
by the baths are represented by jump operators 𝐿ℎ = 𝐿ℓ = |𝑔⟩⟨𝑒|. The rates obey the local detailed balance

ln
𝛾ℎ
𝛾−ℎ

= 𝛽ℎℏ𝜔, ln
𝛾ℓ
𝛾−ℓ

= 𝛽ℓℏ𝜔. (9.93)

The system possesses the steady state

𝜌ss =
Γ+

Γ+ + Γ−
|𝑔⟩⟨𝑔| + Γ−

Γ+ + Γ−
|𝑒⟩⟨𝑒|, (9.94)
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Rate
Heat bath Heat bath

Figure 9.1: (Adapted from Ref. [21]) We simulate the dissipative dynamics of a two-level system coupled to

two heat baths at different temperatures.

where Γ± = 𝛾±ℎ + 𝛾±ℓ. The situation is summarized in Fig. 9.1 (a).
Now, the components of the force and current operators read

𝐽𝑘(𝜌) =
𝛾𝑘𝜌𝑒𝑒 − 𝛾−𝑘𝜌𝑔𝑔

2 𝐿𝑘 +
𝜌𝑒𝑔
2 (𝛾𝑘|𝑔⟩⟨𝑔| − 𝛾−𝑘|𝑒⟩⟨𝑒|), (9.95)

𝐹𝑘(𝜌) = 𝑘B𝛽𝑘ℏ𝜔𝐿𝑘 + [𝐿𝑘, 𝑘B ln 𝜌], (9.96)

for 𝑘 = ℎ, ℓ. Here, 𝜌𝑖𝑗 denotes the matrix elements of 𝜌 in basis {|𝑔⟩, |𝑒⟩}. We see 𝐽𝑘 has a classical component
proportional to 𝛾𝑘𝜌𝑒𝑒 − 𝛾−𝑘𝜌𝑔𝑔 and a non-classical part depending on 𝜌𝑒𝑔. Since 𝛽𝑘 depends on 𝑘, 𝐹𝑘 cannot be
expressed as [𝜙, 𝐿𝑘] (thus, the system is non-conservative due to the temperature gap).

To see the relation to the classical example given in Sec. 6.6, we define

𝑓cl𝑘 (𝜌) ≔ 𝑘B𝛽𝑘ℏ𝜔 + 𝑘B(ln 𝜌𝑒𝑒 − ln 𝜌𝑔𝑔), (9.97)

𝑙𝑘(𝜌) ≔
𝛾𝑘𝜌𝑒𝑒 − 𝛾−𝑘𝜌𝑔𝑔

𝑓cl𝑘 (𝜌)
, (9.98)

𝑎cl𝑘 (𝜌) ≔ 𝛾𝑘𝜌𝑒𝑒 + 𝛾−𝑘𝜌𝑔𝑔, (9.99)

which are supposed to serve as the classical components of the thermodynamic force, the Onsager operator, and

the activity. Then, with a lengthy but straighforward calculation, we can solve Eq. (9.72) to get the relation [21]

𝜙∗(𝜌) = (0 0
0 Δcl(𝜌)) + 𝑏1 (

0 𝜌𝑔𝑒
𝜌𝑒𝑔 0 ) + 𝑏2(𝜌) (

0 0
0 |𝜌𝑔𝑒|2

) + 𝑜(|𝜌𝑔𝑒|2) (9.100)

when the off-diagonal element of 𝜌 is small. Here,

Δcl(𝜌) =
𝑙ℎ(𝜌)𝑓clℎ (𝜌) + 𝑙ℓ(𝜌)𝑓clℓ (𝜌)

𝑙ℎ(𝜌) + 𝑙ℓ(𝜌)
(9.101)

provides the classical potential difference as in Eq. (6.88). Moreover, 𝑏1 and 𝑏2(𝜌) are coefficients given by

𝑏1 =
𝑎clℎ (𝑢) + 𝑎clℓ (𝑢)
𝑙ℎ(𝑢) + 𝑙ℓ(𝑢)

, 𝑏2(𝜌) =
2(𝑎clℎ (𝑢) + 𝑎clℓ (𝑢))

𝜌𝑔𝑔 − 𝜌𝑒𝑒
( 1
𝑙ℎ(𝑢) + 𝑙ℓ(𝑢)

− 1
𝑙ℎ(𝜌) + 𝑙ℓ(𝜌)

), (9.102)

where 𝑢 = 𝐼/2 is the maximally mixed state.
By truncating terms of 𝑜(|𝜌𝑔𝑒|2), we can get the approximated value of the excess EPR.We define Σ̇ex,app(𝜌)

by

Σ̇ex,app(𝜌) ≔ ‖−∇𝕃 ̃𝜙(𝜌)‖2𝜌

with ̃𝜙(𝜌) = (0 0
0 Δcl(𝜌)) + 𝑏1 (

0 𝜌𝑔𝑒
𝜌𝑒𝑔 0 ) + 𝑏2(𝜌) (

0 0
0 |𝜌𝑔𝑒|2

) . (9.103)

In Fig. 9.2, we show numerical results of the two-level system demonstrating the accuracy of the approximation.

The numerical results here and in the next example are obtained with the Python quantum toolbox, QuTiP [161].

In the time evolution, the system approaches the nonequilibrium steady state where heat flows from the hot

bath to the cold bath. At the same time, the total EPR gets closer to the housekeeping EPR, which is almost at

a constant value corresponding to the stationary EPR, whereas the excess EPR vanishes. We can see that the

excess EPR is well approximated by Σ̇ex,app(𝜌) even when 𝜌 is not so close to the steady state.
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Figure 9.2: (Adapted from Ref. [21]) (a) We begin with a pure state (|𝑔⟩ + |𝑒⟩)/√2 added a small noise to

avoid divergence of ln 𝜌. The coherence 𝜌𝑔𝑒 vanished while the classical population converges to the stationary
distribution. We do the simulation with parameters ℏ𝜔 = 1, 𝑘B𝛽ℎ = 0.58, 𝑘B𝛽ℓ = 1, and 𝛾+ = 𝛾− = 0.1. (b)
We plot the EPRs; as the system relaxes, the total and housekeeping EPRs converge to a single nonzero value,

and the excess EPR becomes zero. The approximation formula reproduces the excess EPR well with a small

error (shown in the inset).

Rate

Heat bath

Collective
Transition

Figure 9.3: (Adapted from Ref. [21]) We consider a model of superradiance, where two two-level systems are

simultaneously influenced by a heat bath.

9.5.2 Relaxation of a superradiant system

Next, we discuss the TUR in detail by analyzing the model of superradiance used in Ref. [162]. As depicted in

Fig. 9.3, the system consists of two two-level systems with Hamiltonian

𝐻 = ℏ𝜔(|𝑒⟩⟨𝑒| ⊗ 𝐼 + 𝐼 ⊗ |𝑒⟩⟨𝑒|), (9.104)
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Figure 9.4: (Adapted from Ref. [21]) We simulate the time evolution with parameters ℏ𝜔 = 1, 𝑘B𝛽 = 1,
𝛾+ = Γ(𝑛th + 1) and 𝛾− = Γ𝑛th, where Γ = 0.1 and 𝑛th = 1/(𝑒𝛽ℏ𝜔 − 1). We can observe two stages of

relaxation; in the earlier region (before 𝑡 ≈ 3), the TUR bound given by 𝜉 = |𝑔𝑒⟩⟨𝑒𝑔| + |𝑒𝑔⟩⟨𝑔𝑒| is tighter than
that given by 𝐻, and the converse holds in the later regime.

which has degeneracy; |𝑔⟩|𝑒⟩ and |𝑒⟩|𝑔⟩ both have the eigenvalue 𝜔. We also have a single collective dissipation

(|𝐾| = 1) represented by

𝐿+ = |𝑔⟩⟨𝑒| ⊗ 𝐼 + 𝐼 ⊗ |𝑔⟩⟨𝑒| = 𝐿†−. (9.105)

With the system coupled to a single bath at inverse temperature 𝛽, the local detailed balance 𝛾+/𝛾− = exp(𝛽ℏ𝜔)
is assumed. The authors of Ref. [162] used this model to exemplify that the coherence between the degenerate

states enables the reduction of the dissipation beyond the classical limit.

This system has a nontrivial conservative quantity,

𝑄 = 1
2(|𝑔𝑒⟩⟨𝑔𝑒| + |𝑒𝑔⟩⟨𝑒𝑔| − |𝑔𝑒⟩⟨𝑒𝑔| − |𝑒𝑔⟩⟨𝑔𝑒|). (9.106)

It commutes with 𝐻 and satisfies ∇𝕃𝑄 = 0 because 𝐿±𝑄 = 𝑄𝐿± = 0. As discussed in Sec. 9.2.4, then, there is
a family of detailed balanced steady states

𝜌𝛽,𝜆 =
𝑒−𝛽𝐻−𝜆𝑄

𝑍𝛽,𝜆
, 𝑍𝛽,𝜆 = tr (𝑒−𝛽𝐻−𝜆𝑄). (9.107)

Given an initial state 𝜌0 and the initial value 𝑞 = tr(𝑄𝜌0), we can provide a 𝜆 such that 𝑞 = tr(𝑄𝜌𝛽,𝜆) by

𝜆(𝛽, 𝑞) = − ln [
𝑞

1 − 𝑞(𝑒
𝛽ℏ𝜔 + 𝑒−𝛽ℏ𝜔 + 1)]. (9.108)

It is derived by directly solving 𝑞 = tr(𝑄𝜌𝛽,𝜆) (for details of calculation, see Ref. [21]).
In illustrating the TUR, we choose an initial state so that it has significant coherence between |𝑔𝑒⟩ and |𝑒𝑔⟩

as

𝜌0 =
𝑒−𝛽𝐻

tr(𝑒−𝛽𝐻)
+ 𝛼 𝑒−𝛽ℏ𝜔

tr(𝑒−𝛽𝐻)
𝜉 (9.109)

with 𝜉 = |𝑔𝑒⟩⟨𝑒𝑔|+|𝑒𝑔⟩⟨𝑔𝑒|. To keep the positivity of 𝜌0, 𝛼 ∈ ℝmust satisfy−1 < 𝛼 < 1. We set 𝛼 = −0.9 and
plot the time course of the EPR and the TUR bounds (9.79) for 𝒪 = 𝐻 and 𝒪 = 𝜉 in Fig. 9.4 with parameter
values described in the caption.

In Fig. 9.4, EPR’s time evolution shows that there are two regimes of relaxation. We can estimate that the

earlier stage is the decay of coherence, and the latter is the usual thermalization. In fact, in the earlier step, the

TUR bound for 𝑋 = 𝜉 is much tighter than that for 𝑋 = 𝐻, while 𝐻’s bound gets closer to the EPR in the later

step. Therefore, in the first stage, conflict with the “fluctuation” of 𝜉 is more crucial for the EPR, and later, the
TUR associated with the energy will be more important.





Chapter 10

Conclusion

Summary

We have revealed an underlying geometric framework of nonequilibrium thermodynamics, which we call the

force-current structure, and shown its physical consequences, the housekeeping-excess decomposition and ther-

modynamic trade-off relations. We also confirmed that the general results are valid in several nonequilibrium

systems. Let us review these results closely.

Part I

Part I was composed of five chapters. After the overall introduction in Chapter 1, we first reviewed the structure

of the overdamped Langevin systems in Chapter 2. There, we explained that the Fokker–Planck equation can

be written as a continuity equation and we can define the thermodynamic force. The thermodynamic force

provides the entropy production rate (EPR) with the current, and the force and the current are connnected by

a positive coefficient. This connection provides the EPR with a geometric experssion (2.24), which will later

lead to a decomposition of EPR.We also showed that the conservativeness of thermodynamic forces defined by

the gradient (differential operator) is consistent with the mechanical concept of conservativeness and implies

detailed balance.

Chapter 3 generalized this structure, which we termed the force-current structure. It is composed of the

three assumptions: the continuity-equation form of the equation of motion (3.1) (or (3.3)), the product form

of the entropy production rate (3.7), and the positive relation between the thermodynamic force and the cur-

rent (3.8). By using them, we provided the geometric expression of EPR (3.10) and the equivalence between

conservativeness and detailed balance. The concrete forms of the abstact concepts discussed in this chapter are

summarized in Table 10.1.

Applications of the framework follow: Chapter 4 discussed the geometric housekeeping-excess decomposi-

tion of EPR.We reviewed the literature by using the Langevin dynamics such as the conceptualization by Oono

Table 10.1: Key concepts of the force-current structure in various systems

𝑥 𝑓rev ∇ 𝐽 𝐹 ℳ

Langevin dynamics (Ch. 2) 𝑃(𝑿) None 𝛁 𝑱𝑃(𝑿) 𝑭𝑃(𝑿) 𝜇𝑇𝑃(𝑿)

Markov jump processes (Ch. 6) ⃗𝑝 None 𝐵T ⃗𝐽( ⃗𝑝) ⃗𝐹( ⃗𝑝) 𝖫( ⃗𝑝)

Chemical reaction networks (Ch. 7) ⃗𝑐 None 𝖲T ⃗𝐽( ⃗𝑐) ⃗𝐹( ⃗𝑐) 𝖫( ⃗𝑐)

Hydrodynamic systems (Ch. 8) 𝜌𝒗 −𝛁 ⋅ 𝗝rev𝜌,𝒗 𝛁 𝗝irr𝜌,𝒗 𝗙𝜌,𝒗 Π𝜌(⋅)

Open quantum systems (Ch. 9) 𝜌 −(𝑖/ℏ)[𝐻, 𝜌] ∇𝕃 𝕁(𝜌) 𝔽(𝜌) ℳΓ⊗𝜌(⋅)
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and Paniconi, and concrete formulations, one by Hatano and Sasa and the other by Maes and Netočný. We then

showed that the Maes–Netočný (MN) decomposition can be generally formulated as a geometric decomposi-

tion within the force-current structure given in the preceding chapter. The housekeeping EPR is defined as the

dissipation due to the system’s deviation from detailed balanced systems. The remainder, which defines the

excess EPR, also provides the dissipation stemming purely from dynamical changes. They were provided in a

geometrical manner. In addition to the mathematical conciseness, the geometric decomposition possesses more

generality than the Hatano–Sasa (HS) decomposition, which is properly defined only systems that have stable

steady states. It is applicable to several nonlinear systems, as explained in later chapters.

In Chapter 5, the last chapter of Part I, we derived two kinds of trade-off relations, thermodynamic trade-off

relations (TURs) and thermodynamic speed limits (TSLs), from the force-current structure. A thermodynamic

trade-off relation refers to a trade-off between reducing entropy production, the thermodynamic cost, and gaining

other benefits (reducing other costs). In this thesis, we consider two costs, the short-time fluctuation of an

observable, and the time required to change a system’s state, corresponding to the TUR and the TSL respectively.

We obtained a short-time variant of the TUR, by applying the Cauchy–Schwarz inequality to the geometric

representation of the EPR and the excess EPR. The squared-norm representation is also useful in considering the

TSLs, which employ the Wasserstein distance, a sophisticated distance measure developed in optimal transport

thoery.

The force-current structure

Part II

Part II is a collection of concrete systems where the force-current structure and the accompanying results hold.

It begins with Markov jump processess in Chapter 6. We presented the equation of motion, the master equation,

as a continuity equation by using graph-theoretical notions. Thermodynamics is also introduced in a standard

manner of stochastic theromdynamics. We completed the force-current structure by giving the Onsager operator

with the logarithmicmeans between forward and backward probability fluxes. This chapter is based onRef. [19].

Chapter 7 considers the force-current structure in chemical reaction networks (CRNs). Although a CRN

is a nonlinear system, we revealed that it can be treated similarly to Markov jump processes by focusing on

extended graph theoretical concepts. While we reviewed the thermodynamic structure of the ideal solutions,

the force-current structure can encompass more general non-ideal CRNs. We note that CRNs are the first system

where the geometric method is proved to give properly a decomposition of EPR while the HS decomposition

breaks down. It was shown in our work [19].

The third example is hydrodynamic systems, in Chapter 8. We consider the compressible and incompressible

Newtonian fluids described by the Navier–Stokes equation. We provided a standard derivation of the EPR and

explained that they also fit to the force-current structure. We also proved the housekeeping EPR is equivalent

to the minimum dissipation provided by Helmholtz in the nineteenth century when considering incompressible

fluids. This chapter’s results are first presented in Ref. [20].

Finally, in Chapter 9, we discussed Markovian open quantum systems. We introduced the force-current

structure by using an auxiliary Hilbert space to open quantum systems described by the quantum master equa-

tion. While preceding work proposed other definitions of thermodynamic forces [24, 43], no further structural

discussion was possible. It was in Ref. [21] where we revealed that the thermodynamic force and the current

can be defined as anti-Hermitian operators to yield the force-current structure in open quantum systems.

Further perspective

We first consider further applicability of the force-current structure. It has already been applied to reaction-

diffusion systems, CRNs with spatial degrees of freedom [30]. In this class of systems, the three requirements

are fulfilled and the general consequences can be derived and applied to, for example, pattern formation.

Another possible subject is non-Newtonian fluids. In non-Newtonian fluids, the visocity coefficients can

depend on the shear rate (the gradient of the velocity field), so the linear relation between force and current will

not be guaranteed [142]. Still, we expect that a recently developed non-Euclidean geometric method similar to

the force-current structure [59, 60] would be quite useful in analyzing this system.
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In addition, removing the local equilibrium assumption is a challenging but intriguing direction. Currently,

the force-current structure is always derived from some assumptions about local equilibrium. However, a recent

study, called global thermodynamics, is trying to find a thermodynamic strcuture where the local equilibrium is

critically violated [163, 164]. Although the counterpart of the equilibrium thermodynamics is still a subject of

ongoing research, we could expect the dynamical theory we provided would be extended to such systems.

Moving away from the structural studies, some concepts could also attract practical interest. For example,

the quantum diffusivity can be another interesting research subject. It was introduced naturally from the general

result on TUR in Sec. 9.4. Althoughwe have proved that it turns into the classical diffusivity in limited cases, it is

still vague inwhat sense it represents fluctuations. As the diffusivity generally represents short-time fluctuations,

we expect that the quantum diffusivity works as a reference point when considering long-time fluctuations.
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Appendix A

Introduction to optimal transport theory

In this appendix, we provide some basic results in optimal transport theory [48]. It deals with continuous or

discrete distributions, such as probability distributions or concentration distributions. A distance is defined for

the distributions, and the infinitesimal structure rewrites the equation of motion into a gradient flow equation.

We do not give rigorous proof, so for details, see references such as [48] or [165]. My recent lecture note

(written in japanese) would also help physisists understand further details of optimal transport from physical

viewpoint 1.

A.1 Continuous systems

A.1.1 Definition

We first consider continuous systems like the Langevin systems discussed in Chapter 2. The 2-Wasserstein

distance is defined for two distributions 𝑃 and 𝑄 by

𝒲(𝑃, 𝑄) ≔ inf
Π √

∫∫|𝑿 − 𝒀|2Π(𝑿, 𝒀)𝑑𝑋𝑑𝑌, (A.1)

where Π has to satisfy

Π(𝑿, 𝒀) ≥ 0, ∫Π(𝑿, 𝒀)𝑑𝑌 = 𝑃(𝑿), ∫Π(𝑿, 𝒀)𝑑𝑋 = 𝑄(𝒀). (A.2)

If Π satisfies this condition, it is called a coupling. The value Π(𝑿, 𝒀) indicates how much mass is transported

from 𝑿 to 𝒀. Thus, we sum up over the destinations 𝒀, the sum should be the mass at the origin. Also, the final

distribution should be accounted by the mass coming from all around the world.

The distance is given by regarding the squared distance |𝑿 − 𝒀|2 as the cost per transportation. The min-
imization is performed over all couplings. It is known that the optimal transportation always exists for the

2-Wasserstein distance [48]. We can choose another function as the transporation cost, such as |𝑿 − 𝒀|𝑟 for
𝑟 ≥ 1.

A.1.2 Distance

In general, a function 𝑑 ∶ 𝑋 × 𝑋 → ℝ is a distance if it satisfies the following conditions:

1. Nonnegativity 𝑑(𝑥, 𝑦) ≥ 0,
2. Nondegeneracy 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦,
3. Symmetry 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),
4. Triangle inequality 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧).

(A.3)

Let us confirm that the 2-Wasserstein distance satisfies these conditions.

1Available here https://ykohei.com/files/OT.pdf (PDF).
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The nonnegativity is obviously true. The symmetry is also immediately convinced after careful considera-

tion.

The necessity (⇐) in the nondegeneracy is also obvious because if 𝑃 = 𝑄, then no transport is required. The
sufficiency is derived as follows: 𝒲(𝑃, 𝑄) = 0 indicates Π concentrates 𝑿 = 𝒀, so Π(𝑿, 𝒀) = 𝜋(𝑿)𝛿(𝑿 − 𝒀)
with some 𝜋. Then, we see

𝑃(𝑿) = ∫Π(𝑿, 𝒀)𝑑𝑌 = 𝜋(𝑿), 𝑄(𝑿) = ∫Π(𝑿, 𝒀)𝑑𝑋 = 𝜋(𝒀).

Therefore,𝒲(𝑃, 𝑄) = 0 implies 𝑃 = 𝑄.
The triangle inequality requires a little technical argument. It means that the following inequality holds for

any probability 𝑃,𝑄, 𝑅:

𝒲(𝑃, 𝑅) +𝒲(𝑅, 𝑄) ≥𝒲(𝑃, 𝑄). (A.4)

Let Π1 and Π2 be the optimal couplings for𝒲(𝑃, 𝑅) and𝒲(𝑅, 𝑄). Then, we can construct a coupling between
𝑃 and 𝑄 by

Π∗(𝑿, 𝒀) = ∫ Π1(𝑿, 𝒁)Π2(𝒁, 𝒀)
𝑅(𝒁)

𝑑𝑍. (A.5)

Then, by definition, we get

𝒲(𝑃, 𝑄) ≤
√
∫|𝑿 − 𝒀|2Π∗(𝑿, 𝒀)𝑑𝑋𝑑𝑌.

Moreover, the triangle inequality for the Euclidean norm leads to

∫|𝑿 − 𝒀|2Π∗(𝑿, 𝒀)𝑑𝑋𝑑𝑌 = ∫ |𝑿 − 𝒀|2Π1(𝑿, 𝒁)Π2(𝒁, 𝒀)
𝑅(𝒁)

𝑑𝑋𝑑𝑌𝑑𝑍

≤ ∫(|𝑿 − 𝒁| + |𝒁 − 𝒀|)2Π1(𝑿, 𝒁)Π2(𝒁, 𝒀)
𝑅(𝒁)

𝑑𝑋𝑑𝑌𝑑𝑍,

where we substituted the definition of Π∗. From the Minkowski inequality, we obtain

√
∫(|𝑿 − 𝒁| + |𝒁 − 𝒀|)2Π1(𝑿, 𝒁)Π2(𝒁, 𝒀)

𝑅(𝒁)
𝑑𝑋𝑑𝑌𝑑𝑍

≤
√
∫|𝑿 − 𝒁|2Π1(𝑿, 𝒁)Π2(𝒁, 𝒀)

𝑅(𝒁)
𝑑𝑋𝑑𝑌𝑑𝑍 +

√
∫|𝒁 − 𝒀|2Π1(𝑿, 𝒁)Π2(𝒁, 𝒀)

𝑅(𝒁)
𝑑𝑋𝑑𝑌𝑑𝑍

=
√
∫|𝑿 − 𝒁|2Π1(𝑿, 𝒁)𝑑𝑋𝑑𝑍 +√

∫|𝒁 − 𝒀|2Π2(𝒁, 𝒀)𝑑𝑌𝑑𝑍 =𝒲(𝑃, 𝑅) +𝒲(𝑅, 𝑄),

which finally leads to the triangle inequality.

A.1.3 Monge problem

Another formulation, called the Monge problem, helps us understand the Wasserstein as a transportation cost

more intuitively [166]. It is given as

𝒲𝑀(𝑃, 𝑄) ≔ inf
𝑻
√𝐶(𝑻),

with 𝐶(𝑻) ≔ ∫|𝑿 − 𝑇(𝑿)|2𝑃(𝑿)𝑑𝑋, (A.6)

where 𝑻 must satisfy

𝑄(𝒀) = ∫𝑃(𝑿)𝛿(𝒀 − 𝑻(𝑿))𝑑𝑋. (A.7)

In the Monge problem, 𝑄(𝒀) is accounted by mass 𝑃(𝑿) of a few places 𝑿 such that 𝒀 = 𝑻(𝑿). The map 𝑻
is referred to as a transporation plan. For the 2-Wasserstein distance, if 𝑃 and 𝑄 are not singular, the Monge

problem provides the same value as the Wasserstein formulation and the optimal coupling Π is provided by the

optimal transporation plan 𝑻 as Π(𝑿, 𝒀) = 𝑃(𝑿)𝛿(𝒀 − 𝑻(𝑿)) [48].
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A.1.4 Benamou–Brenier formula

In addition, the 2-Wasserstein distance can be provided in a kinetic formula.

𝒲(𝑃, 𝑄) = inf
𝑝,𝒗

√√

√
∫

1

0
∫|𝒗(𝑡, 𝑿)|2𝑝(𝑡, 𝑿)𝑑𝑋𝑑𝑡, (A.8)

where 𝑝, 𝒗 satisfies

𝑝(0, 𝑿) = 𝑃(𝑿), 𝑝(1, 𝒀) = 𝑄(𝒀),
𝜕𝑝
𝜕𝑡 (𝑡, 𝑿) = −𝛁 ⋅ (𝑝(𝑡, 𝑿)𝒗(𝑡, 𝑿)). (A.9)

As mentioned in Sec. 5.1.3, this is called the Benamou–Brenier formula [48, 108, 165]. The time interval is

now [0, 1], but it can be rescaled to [0, 𝜏] (𝜏 > 0) to yield

𝒲(𝑃, 𝑄) = inf
𝑝,𝒗√

𝜏∫
𝜏

0
∫|𝒗(𝑡, 𝑿)|2𝑝(𝑡, 𝑿)𝑑𝑋𝑑𝑡. (A.10)

Moreover, the velocity field can be replaced by a potential gradient as

𝒲(𝑃, 𝑄) = inf
𝑝,𝜓√

𝜏∫
𝜏

0
∫|𝛁𝜓(𝑡, 𝑿)|2𝑝(𝑡, 𝑿)𝑑𝑋𝑑𝑡, (A.11)

where the third condition in Eq. (A.9) reads

𝜕𝑝
𝜕𝑡 (𝑡, 𝑿) = 𝛁 ⋅ (𝑝(𝑡, 𝑿)𝛁𝜓(𝑡, 𝑿)). (A.12)

In fact, the potential that solves Eq. (A.12) is unique up to an additive constant. Intuitively, this is because

𝛁 ⋅ (𝑝𝛁) is a nonsingular operator if we neglect the freedom of an additive constant (i.e., the reference point

of the potential). Given the unique solution 𝜓, every velocity field 𝒗 that satisfies the continuity proves more
costly: Let 𝒘 ≔ 𝒗 − (−𝛁𝜓). Then,

∫|𝒗|2𝑝𝑑𝑋 = ∫|𝒘|2𝑝𝑑𝑋 +∫|𝛁𝜓|2𝑝𝑑𝑋 − 2∫𝑝𝒘 ⋅ 𝛁𝜓𝑑𝑋

= ∫|𝒘|2𝑝𝑑𝑋 +∫|𝛁𝜓|2𝑝𝑑𝑋 + 2∫𝛁 ⋅ (𝑝𝒘)𝜓𝑑𝑋

= ∫|𝒘|2𝑝𝑑𝑋 +∫|𝛁𝜓|2𝑝𝑑𝑋 ≥ ∫|𝛁𝜓|2𝑝𝑑𝑋,

where we omit the arguments, performed integration by parts in the second line, and used𝛁⋅(𝑝𝒘) = 𝛁⋅(𝑝𝒗)+
𝛁 ⋅ (𝑝𝛁𝜓) = 0 to get the last line.

A.1.5 Gradient flow

The Benamou–Brenier formula suggets that

𝒲(𝑃, 𝑃 + ̇𝑃Δ𝑡)2 = Δ𝑡2∫|𝛁𝜓(𝑿)|2𝑃(𝑿)𝑑𝑋 (A.13)

for a probability distribution 𝑃 and a “time derivative” ̇𝑃. Here, 𝜓 is given as the unique solution to the equation

̇𝑃(𝑿) = 𝛁 ⋅ (𝑃(𝑿)𝛁𝜓(𝑿)). (A.14)

Considering in the opposite direction, we can define a local metric at 𝑃 by

‖ ̇𝑃‖𝑃 ≔√
∫|𝛁𝜓(𝑿)|2𝑃(𝑿)𝑑𝑋 (A.15)
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with the potential 𝜓 uniquely deteremined by 𝑃 and ̇𝑃. We can even define an inner product by

⟨ ̇𝑃, �̇�⟩𝑃 = ∫𝛁𝜓(𝑿) ⋅ 𝛁𝜙(𝑿)𝑃(𝑿)𝑑𝑋, (A.16)

where 𝜙 is given by 𝑃 and �̇�.
Given that geometry, we can define theWasserstein gradient of a functional of probability distributions. Let

ℱ map a probability distribution to a real number. Then, we define the gradient by

⟨gradℱ, ̇𝑃⟩𝑃 =
𝑑
𝑑𝑡ℱ(𝑃𝑡)

||𝑡=0 (A.17)

for any 𝑃𝑡 such that 𝑃0 = 𝑃 and 𝜕𝑃𝑡/𝜕𝑡|𝑡=0 = ̇𝑃. For example, for the KL divergence from distribution 𝑄,

ℱ𝑄[𝑃] = ∫𝑃(𝑿) ln 𝑃(𝑿)
𝑄(𝑿)

𝑑𝑋, (A.18)

the gradient is obtained as

gradℱ𝑄[𝑃](𝑿) = −𝛁 ⋅ (𝑃(𝑿)𝛁 ln
𝑃(𝑿)
𝑄(𝑿))

(A.19)

because

𝑑
𝑑𝑡ℱ𝑄[𝑃𝑡] = ∫ 𝜕𝑃

𝜕𝑡 (𝑡, 𝑿) ln
𝑃(𝑡, 𝑿)
𝑄(𝑿)

𝑑𝑋 = ∫𝛁 ⋅ (𝑃(𝑡, 𝑿)𝛁𝜓(𝑡, 𝑿)) ln 𝑃(𝑡, 𝑿)
𝑄(𝑿)

𝑑𝑋

= −∫𝑃(𝑡, 𝑿)𝛁𝜓(𝑡, 𝑿) ⋅ 𝛁 ln
𝑃(𝑡, 𝑿)
𝑄(𝑿)

𝑑𝑋.

The Fokker–Planck equation (2.4) can be expressed as a gradient flow equation with the Wasserstein gradi-

ent. Here, we need to assume 𝐷 = 1 and the mechanical force 𝒇 is given by a potential 𝑈 as 𝒇 = −𝛁𝑈. Then,
the Fokker–Planck equation reads

𝜕𝑃
𝜕𝑡 (𝑿) = 𝛁 ⋅ (𝛁(𝛽𝑈(𝑿))𝑃(𝑿)) + 𝛁2𝑃(𝑿), (A.20)

where we omitted the time dependence. It can be further rewritten as

𝜕𝑃
𝜕𝑡 (𝑿) = 𝛁 ⋅ [𝑃(𝑿)𝛁(𝛽𝑈(𝑿) + ln𝑃(𝑿))]. (A.21)

On the other hand, by choosing 𝜋(𝑿) as

𝜋(𝑿) = 𝑒−𝛽𝑈(𝑿)

∫ 𝑒−𝛽𝑈(𝑿)𝑑𝑋
, (A.22)

we get

gradℱ𝜋[𝑃](𝑿) = −𝛁 ⋅ (𝑃(𝑿)𝛁(𝛽𝑈(𝑿) + ln𝑃(𝑿))). (A.23)

Therefore, the Fokker–Planck equation is given as

𝜕𝑃
𝜕𝑡 (𝑿) = −gradℱ𝜋[𝑃](𝑿). (A.24)

Since ℱ𝜋[𝑃] is strictly convex, it suggests the convergence to 𝜋.
If the diffusion coefficient 𝐷 is not one, Eq. (A.24) is no longer valid. Still, we can resolve this problem by

modifying the Wasserstein distance and the contiunity equation as

𝒲𝐷(𝑃, 𝑄) = inf
𝑝,𝜓√

𝜏∫
𝜏

0
∫|𝛁𝜓(𝑡, 𝑿)|2𝐷𝑝(𝑡, 𝑿)𝑑𝑋𝑑𝑡, (A.25)

𝜕𝑝
𝜕𝑡 (𝑡, 𝑿) = 𝛁 ⋅ (𝐷𝑝(𝑡, 𝑿)𝛁𝜓(𝑡, 𝑿)). (A.26)
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Then, we would recover Eq. (A.24) with modified geometry

⟨ ̇𝑃, �̇�⟩𝐷𝑃 = ∫𝛁𝜓(𝑿) ⋅ 𝛁𝜙(𝑿)𝐷𝑃(𝑿)𝑑𝑋, (A.27)

where 𝜓 and 𝜙 are determined from ̇𝑃 = 𝛁 ⋅ (𝐷𝑃𝛁𝜓) and �̇� = 𝛁 ⋅ (𝐷𝑃𝛁𝜙). For this metric, the gradient of the
KL divergence reads

grad𝐷ℱ𝑄[𝑃](𝑿) = −𝛁 ⋅ (𝐷𝑃(𝑿)𝛁 ln
𝑃(𝑿)
𝑄(𝑿))

, (A.28)

where grad𝐷 indicates that we used the metric that depends on 𝐷. Then, the Fokker–Planck equation with a
conservative mechanical force will read

𝜕𝑃
𝜕𝑡 (𝑿) = −grad𝐷ℱ𝜋[𝑃](𝑿). (A.29)

A.2 Extension to discrete systems

For simplicity, we set 𝑘B = 1 and 𝑅 = 1 in this section.
Amathematical analogues of the Benamou–Brenier formula (A.25) was proposed bymathematicians aiming

to express the classical master equation (6.7) as a Wasserstein gradient flow equation [109]. From the physical

point of view, it is provided as

𝒲𝖫( ⃗𝑝, ⃗𝑞) = inf
�⃗�,�⃗�√

𝜏∫
𝜏

0
‖∇ ⃗𝜓(𝑡)‖2𝜌(𝑡)𝑑𝑡, (A.30)

with the conditions

⃗𝜌(0) = ⃗𝑝, ⃗𝜌(𝜏) = ⃗𝑞,
𝑑 ⃗𝑝
𝑑𝑡 = −∇T𝖫( ⃗𝜌(𝑡))∇ ⃗𝜓(𝑡). (A.31)

For notational details, see Chapter 6. From the correspondence between 𝖫( ⃗𝑝) and𝐷𝑃(𝑿) discussed in Sec. 6.3.3,
it is clear that Eq. (A.30) generalizes Eq. (A.25). Moreover, the normalization is not an essential constraint; we

can define the distance also for CRNs by just regarding ∇ in Eq. (A.30) as the transpose of the stoichiometric

matrix [19, 110].

The proof of the triangle inequality for these quantity is rather technical and lengthy. It is provided in the

original paper [109], which assumes the detailed balance, and our paper [19], not assuming it.

A.2.1 Gradient flow

Similarly to the continuous case, the Wasserstein-like distance yields an inner product between “time deriva-

tives” ̇⃗𝑝 and ̇⃗𝑞 at a probability distribution 𝑝 by

⟨⟨ ̇⃗𝑝, ̇⃗𝑞 ⟩⟩𝑝 ≔ ⟨∇𝜓,∇𝜙⟩𝑝 ≡ ⃗𝜓T∇T𝖫( ⃗𝑝)∇ ⃗𝜙, (A.32)

where ⃗𝜓 and ⃗𝜙 are obtained by solving ̇⃗𝑝 = −∇T𝖫( ⃗𝑝)∇ ⃗𝜓 and ̇⃗𝑞 = −∇T𝖫( ⃗𝑝)∇ ⃗𝜙. The gradient of the KL

divergence,

ℱ�⃗�[ ⃗𝑝] = ∑
𝑖
𝑝𝑖 ln

𝑝𝑖
𝑞𝑖
, (A.33)

is given by

gradℱ�⃗�[ ⃗𝑝] = ∇T𝖫( ⃗𝑝)∇(ln ⃗𝑝 − ln ⃗𝑞) (A.34)

in the same way as Eq. (A.28). If the system is detailed balanced, i.e.,

ln
𝑅𝑒
𝑅−𝑒

= 𝛽(𝜖𝑠(𝑒) − 𝜖𝑡(𝑒)) (A.35)
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holds, the master equation will be

𝑑 ⃗𝑝
𝑑𝑡 = −gradℱ�⃗�eq[ ⃗𝑝], (A.36)

where 𝑝eq𝑖 ∝ 𝑒−𝛽𝜖𝑖. This is proved as follows: first, note that

−gradℱ�⃗�eq[ ⃗𝑝] = −∇T𝖫( ⃗𝑝)∇(ln ⃗𝑝 + 𝛽 ⃗𝜖)

and

𝐹𝑒( ⃗𝑝) = ln
𝑅𝑒𝑝𝑠(𝑒)
𝑅−𝑒𝑝𝑡(𝑒)

= −[∇T(ln ⃗𝑝 + 𝛽 ⃗𝜖)]𝑒.

Therefore, we find

−[ gradℱ�⃗�eq[ ⃗𝑝]]𝑖 = −∑
𝑒
∇𝑒𝑖

𝐽𝑒( ⃗𝑝)
𝐹𝑒( ⃗𝑝)

( − 𝐹𝑒( ⃗𝑝)) = [∇T ⃗𝐽( ⃗𝑝)]𝑖.

Similarly, the rate equation (7.12) is given as aWasserstein gradient flow equation when the detailed balance

and the mass action kinetics are assumed [19, 110]. This time, we need to use the generalized KL divergence

ℱ�⃗�′[ ⃗𝑐] = ∑
𝛼
(𝑐𝛼 ln

𝑐𝛼
𝑐′𝛼

− 𝑐𝛼 + 𝑐′𝛼) (A.37)

instead of the KL divergence.

A.2.2 Remark

Although this distance function is difficult to give a transportational meaning such as the Monge problem after

all, it reproduces differential geometric properties of the original Wasserstein distance very well [167–169].

It includes some universal inequalities involving the curvature and the convergence speed [48], which can be

useful for nonequilibrium thermodynamics [170]. Reference [171] is the only application to nonequilibrium

thermodynamics that we could find. The paper provides a lower bound on the EPR by using the so-called loga-

rithmic Sobolev constant, which has much to do with the geometry introduced by theWasserstein distance [48].
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